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Abstract

Tests that are capable of analyzing any practical block cipher, no matter
what the internal structure of the block cipher may be, are the subject
of this work. It is argued that such tests must be statistical.

A discrete memoryless source producing a fixed-length sequence of
output digits from a finite alphabet is considered. The problem of de-
ciding whether the single letter probability distribution of the discrete
memoryless source is equal to a given probability distribution or not is
analyzed in detail. For this problem of statistical hypothesis testing the
Pearson statistic is used. What can validly be concluded from statistical
hypothesis testing is carefully considered.

We show that if a cryptanalyst cannot solve at least one of two basic
problems for a given block cipher, then he cannot “break” this block
cipher. These two basic problems are (1) to find an algorithm that is
distinguishing for the given block cipher and (2) to find an algorithm
that is key-subset distinguishing for the given block cipher and for a
given decomposition of the key space.

An approach to finding an algorithm that is distinguishing for a
given block cipher as well as an approach to finding an algorithm that
is key-subset distinguishing for a given block cipher and for a given
decomposition of the key space are described. These two approaches
form the framework for the statistical testing of block ciphers.

A family of tests called bit-dependency tests is presented. The aim
of a bit-dependency test is to say as much as possible about the qual-
ity of a block cipher when only a given subset of bits of the plaintext
blocks and a given subset of bits of the corresponding ciphertext blocks
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iv Abstract

are observed.

Keywords: cryptography, cryptanalysis, block ciphers, bit-dependency
tests, statistical hypothesis testing, statistical tests, Pearson statistic.

Kurzfassung

Der Gegenstand dieser Arbeit sind Tests, welche praktische Blockver-
schliissler analysieren, ohne deren interne Struktur zu beriicksichtigen.
Es wird begriindet, weshalb solche Tests statistisch sind.

Wir betrachten eine diskrete, geddchtnislose Quelle, welche eine Fol-
ge fester Linge von Ausgangssymbolen aus einem endlichen Alphabet
generiert. Das Problem, zu entscheiden, ob die Wahrscheinlichkeitsver-
teilung der Ausgangssymbole gleich einer vorgegebenen Wahrscheinlich-
keitsverteilung ist oder nicht, wird im Detail analysiert. Fiir dieses Pro-
blem des Testens statistischer Hypothesen verwenden wir die Pearson-
statistik. Dabei wird griindlich iiberlegt, was vom Testen statistischer
Hypothesen wirklich gefolgert werden kann.

Wir zeigen, dass so lange ein Kryptoanalyst nicht zumindest eines
von zwei grundlegenden Problemen fiir einen vorgegebenen Blockver-
schliissler 16sen kann, so lange wird dieser Kryptoanalyst diesen Block-
verschliissler auch nicht “brechen” kénnen. Diese beiden grundlegenden
Probleme sind (1) einen Algorithmus zu finden, der fiir den vorgegebe-
nen Blockverschliissler unterscheidend ist, und (2) einen Algorithmus zu
finden, der fiir den vorgegebenen Blockverschliissler und eine vorgegebe-
ne Unterteilung des Schliisselraumes schliisselteilmengeunterscheidend
ist.

Im Folgenden beschreiben wir ein Verfahren, um einen Algorithmus
zu finden, der fiir einen vorgegebenen Blockverschliissler unterscheidend
ist; ebenfalls wird ein Verfahren angegeben, um einen Algorithmus zu
finden, der fiir einen vorgegebenen Blockverschliissler und fiir eine vorge-
gebene Unterteilung des Schliisselraumes schliisselteilmengeunterschei-



vi Kurzfassung

dend ist. Diese beiden Verfahren bilden den Rahmen fiir das statistische
Testen von Blockverschliisslern.

Schliesslich wird eine Familie von Tests, sogenannte Bitabhangigkeit-
stests, vorgestellt. Das Ziel von Bitabhéngigkeitstests ist, so viel wie
moglich iiber die Qualitit eines Blockverschliisslers auszusagen, wenn
nur eine vorgegebene Untermenge von Bits der Klartextblocke und nur
eine vorgegebene Untermenge von Bits der Kryptogrammblocke beob-
achtet werden.

Stichworte: Kryptographie, Kryptoanalyse, Blockverschliissler, Bit-
abhingigkeitstests, Testen statistischer Hypothesen, statistische Tests,
Pearsonstatistik.
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Chapter 1

Introduction

There is a paucity of literature on the statistical testing of block ciphers.
From some of the few publications on this subject, one learns more
about how not to do such statistical testing rather than about how to
do it properly. For instance, in [2] a block cipher is tested using 13
tests. The first and second tests have no dependence whatsoever on the
tested block cipher—the results of these tests say something about the
quality of the pseudo-random number generator used but say nothing
about the tested block cipher itself. The third and fourth tests test the
same behavior of a block cipher—running either test twice is equivalent
to running both tests once.

These examples give an idea of the pitfalls that one can encounter in
the statistical testing of block ciphers. Designing good tests is precision
work and requires careful analysis.

This dissertation is organized as follows. In Chapter 2 the mathemat-
ical theory of statistical hypothesis testing is presented in the manner
that we will use it in Chapter 4 for the statistical testing of block ci-
phers. What can validly be concluded from statistical hypothesis testing
is carefully considered.

In Chapter 3 we show how a cryptanalyst can use algorithms of a
certain kind to attack a block cipher and we establish when a crypt-
analyst cannot break a given block cipher. From these considerations,
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2 Chapter 1. Introduction

we formulate two basic problems that a cryptanalyst can attempt to
solve. We show that if a cryptanalyst cannot solve at least one of these
two basic problems for a given block cipher, then he cannot break this
block cipher. These two basic problems are (1) to find an algorithm that
is distinguishing for a given block cipher and (2) to find an algorithm
that is key-subset distinguishing for a given block cipher and for a given
decomposition of the key space.

In Chapter 4 we describe an approach to finding an algorithm that is
distinguishing for a given block cipher as well as an approach to finding
an algorithm that is key-subset distinguishing for a given block cipher
and for a given decomposition of the key space. We show that the core
of any such algorithm is an algorithm for eztracting a feature from an
invertible function.

In Chapter 5 we present a family of algorithms for extracting a
feature from an invertible function for what we call bit-dependency tests.
The aim of a bit-dependency test is to say as much as possible about the
quality of a block cipher when only a given subset of bits of the plaintext
blocks and a given subset of bits of the corresponding ciphertext blocks
are observed.

Chapter 2

Statistical Hypothesis
Testing

In this chapter we present the mathematical theory of statistical hypoth-
esis testing in the manner that we will use it for the statistical testing
of block ciphers.

This chapter is organized as follows. In Section 2.1 we introduce
the general model of statistical hypothesis testing and consider the two
kinds of error that one can make in a decision. Section 2.2 treats the
Neyman-Pearson solution for choosing a hypothesis. The Neyman-Pear-
son solution is applicable to one of the cases we will encounter later in
the statistical testing of block ciphers. In Section 2.3 we formulate solu-
tions for choosing a hypothesis for all other cases that we will encounter
later in the statistical testing of block ciphers. In Section 2.4 we con-
sider carefully what can validly be concluded from statistical hypothesis
testing.
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2.1 Model

DMS — U= D
Probability| 7Q7 ~ | DMSq(.) Statistical
Vector [Q1, ... Q [on,... Test
Generator ,Qy) L UM]]
“first “second

random experiment” random experiment”

Figure 2.1: Model for statistical hypothesis testing.

A probability vector p in R™ is a vector p = [p1,ps, . .. , Pn] such that
its components are nonnegative and sum to 1.

In the “first random experiment” shown in Figure 2.1, the probabil-
ity vector q is chosen from a finite set Q according to some, usually
unknown, probability distribution Pg(q). Then, in the “second random
experiment”, the observation u is produced by generating M output dig-
its from a discrete memoryless source whose (single-letter) probability
distribution is q, i.e., u[m] € {u1, po,... ,ps} and Py (pj) = g5 for
m=1,2,..., M. We assume that the parameters M and J, and there-
fore the set of possible observations U/, are finite and fixed in advance.

Based only on the observation u, the statistical test has to decide
whether the chosen probability vector g in the first random experiment
was equal to a known probability vector p or not. This leads to the two
hypotheses:

Hy: q=p (2.1)
Hy: q#p.

In our treatment of hypothesis testing, we consider Hy and H; to be
events. The probabilities of these events are

P [Ho] = Pqo(p) (2.3)

P[Hi]= ) Pala)=1-Fqop). (2.4)
acQ\(p)

2.2. The Neyman-Pearson Statistical Test 5

In most cases, these probabilities will be unknown, which is the almost
universal assumption in hypothesis testing. For this reason, most treat-
ments of hypothesis testing refrain from treating Hy and H; as events.
However, not to do so clouds the meaning of such function as Pqg, (.),
which is the standard notation for the probability distribution for Q
conditioned on the occurrence of the event Hy. It seams preferable to
us to avoid such notational questions by considering Hy and H; to be
events, albeit events with unknown probabilities. For a good discussion
of this point the reader is referred to [6, pages 320-321].

We will always assume that the probability vector of the ideal source
p is in @ and that p has no zero components. Hence every observation
u in the set of possible observations I/ could have been generated by
the ideal source. We will further always assume that, in addition to
the probability vector of the ideal source p, there is at least one other
probability vector in Q, i.e., |Q| > 2, but we will not assume that
probability vectors in @ (other than p) have all non-zero components.

Every statistical test is a decomposition of the set of possible obser-
vations U/ into disjoint subsets Uy and Uy with the meaning that one
accepts Hy as true (i.e., D = 0) if u € Uy and one accepts Hy as true
(i.e., D =1)if u € Uy. We will call Uy and U; the decision regions for
the hypotheses Hy and H;, respectively.

There are two kinds of errors one can make:

type Lerror: o = Ppg, (1) = Z Py g, (u) (2.5)
uclly

type Il error : 8 = Ppyp, (0) = Z Py, (u). (2.6)
uelly

2.2 The Neyman-Pearson Statistical Test

One reasonable way to choose the decision regions Uy and U is implied
by the following well-known theorem [27].
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Theorem 2.1 (Neyman-Pearson) For any positive real number T,
let

=<{u:u an Poj (W) ()

Uy = { tuelU d PU|H0 (u) < T} (27)
Juu Py, ()

U = { :u€eU and U|Ho(u) > T} (2.8)

and let o and B be the probabilities of type I and type II error corre-
sponding to this choice of decision regions. Suppose & and (3 are the
probabilities of type I and type II errors corresponding to some other
choice of decision regions. Then & < « implies that 3 > 3 and, con-
versely, B < 3 implies that a > a.

The proof of Theorem 2.1 is given on page 91.

This theorem does two things. First, it implies one reasonable way
to choose the decision regions Uy and U;. Second, it shows that there
exist no other choice of decision regions for which both types of error
have smaller probabilities than those for this choice. In this sense, the
theorem gives us a best solution to the problem.

To apply Theorem 2.1, one needs to know Pyx,(u) and Py)g, (u).
Because Hy and Q = p are the same event, it follows that

Pyu,(u) = Pyq(ulp). (2.9)

Hence, Py|g, (1) may always be considered to be known. To see what
is required for Py p, (u) to be known, we write

Py, (u) = Z Pyqm, (w,q) = Z Py|qu, (u|q)Pgu, (a). (2.10)
qeQ qeQ

But given Q = g, U has no further dependence on H; so that

Py, (w) = Y Pujq(ula)Pqm, (q) (2.11)
q€eQ
= Y Puela)Pom(q) (2.12)
acQ\{p}

where we have used the fact that Pq z, (p) = 0. It follows that Py|x, (u)
is known when Pq,, (q) is known for every q € Q@ \ {p}, which always
is the case when @ contains only two probability vectors, p and p, since
then ]DQ‘H1 (I_)) =1.

2.3. Components of a Statistical Test 7

2.3 Components of a Statistical Test

We now show that, with virtually no loss of optimality, the statistical
test box in Figure 2.1 can be realized as a statistical test on the “com-
position” of U, rather than U itself, as shown in the following figure:

U= | Compo- N = - Sm - D
sition Statistic Decision
[U1],.-. Analyzer [N1,... | Former Rule
> U[M]] ’ NJ]

Figure 2.2: A model for a statistical test.

The composition of the sequence u = [u[l],u[2],... ,u[M]] with
ulm] € {pi,p2,...,p5} for m = 1,2,... M is the vector n =
[n1,n2,... ,ny] where n; is the number of occurrences of the symbol

p; inufor j =1,2,...,J. Note that ijlnj =M.

In terms of the composition N = n = [ny,ns,... ,n7] of the obser-
vation U = u = [u[l],u[2],. .. ,u[M]] in Figure 2.1, we have
Pyjqlula) = ¢ q3% -~ ¢}’ (2.13)

as follows from the definition of a discrete memoryless source. The
probability conditioned on Q = q of a particular composition N = n
is obtained by summing Py|q(ulq) over all u with this composition,
which gives

M!

Priq(nla) = mq?lqu gy (2.14)
M!

=ttt 2.15

nilng!---n ! vlq(ula) ( )

where the fraction on the right is the multinomial coefficient that gives
the count of the number of sequences u with the composition n. Because
Hy and Q = p are the same event, it follows that

PN, (n) = Pniq(n|p). (2.16)
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To determine Py, (n), we follow a derivation entirely similar to that
which led to (2.12) to obtain

Py (m) = > Pnjq(nja)Pojm (@) (2.17)
ae\{p}
Substituting (2.15) into (2.17) and (2.16) gives

Pnjm(n) _ Py, (w)
Px,(n)  Pujn,(u)

(2.18)

where n is the composition of u.

It follows from (2.18) that the Neyman-Pearson statistical test of
Theorem 2.1 gives exactly the same result whether applied to the obser-
vation U = u or to the “observation” N = n of only the composition of
u. More generally, one sees from (2.15) that Pnjq(n|q) and Py|q(ulq)
are always proportional with the constant of proportionality indepen-
dent of q. This suggests that virtually any optimality criterion for a
statistical hypothesis test will lead to the optimum statistical test giv-
ing the same result whether applied to the observation U = u or to
the observation N = n of only the composition of u. The only signifi-
cant exception to this equivalence is the “minimax” criterion as we now
explain.

The minimax criterion for a statistical test is the smallness of the
maximum of the type I and type II error probability, i.e., the minimax
statistical test minimizes max(c, 3).

Ezample: Assume the set Q of probability vectors contains only the
two probability vectors p = [0.7,0.3] and p = [0.3,0.7] and assume the
produced sequence u has length M = 2. Then the probability distribu-
tion of the sequence u conditioned on the event Hy and the event Hy,
respectively, is as shown in Table 2.1. Also shown in Table 2.1 is the
“likelihood ratio” used for the Neyman-Pearson statistical test of The-
orem 2.1. Table 2.2 shows six of the sixteen statistical tests that can
be defined for this case and shows for each of these six statistical tests
the probability of type I error, , and the probability of type II error,
B3. The statistical tests D;(.) and D2(.) in Table 2.2 are the minimax
statistical tests and the statistical tests Ds(.), D4(.), D5(.) and Dg(.)
in Table 2.2 are the Neyman-Pearson statistical tests. Note that this
example does not contradict Theorem 2.1, e.g., 0.30 < 0.51 does imply

2.3. Components of a Statistical Test 9

u | Pom,(w) | Po, (w) | s
[, o] 0.49 0.09 0.18
(1015 2] 0.21 0.21 1.00
112, 1] 0.21 0.21 1.00
(112, 2] 0.09 0.49 5.44

Table 2.1: Probability distribution of the sequence u conditioned on the
event Hy and on the event Hy, respectively, and the “likelihood ratio”.

u Di(u) | Dy(u) | Ds(u) | Dy(u) | D5(u) | Dg(u)
(e, po] 0 0 0 0 0 1
(111, 2] 0 1 0 0 1 1
(2, p1] 1 0 0 0 1 1
[/1’27 ,Uz] 1 1 0 1 1 1

a 0.30 0.30 0.00 0.09 0.51 1.00

Jé) 0.30 0.30 1.00 0.51 0.09 0.00

Table 2.2: Siz statistical tests and there probability o of type I error
and probability B of type II error.

0.30 > 0.09. One could define a “randomized” Neyman-Pearson statisti-
cal test by choosing Hy with probability 1/2 whenever the sequence u
is either equal to [u1, 2] or equal to [u2, p1]. This “randomized” Ney-
man-Pearson statistical test would in fact be minimax and could be
performed on the sequence u or on the composition n.

It is essentially only for criteria such as the minimax criterion where
a “randomized statistical test” does better than a (deterministic) statis-
tical test that one loses some optimality (and usually then only a slight
amount) when treating the composition n as the observation rather then
the sequence u itself. The reason is that the fact that there are many
sequences u with the same composition n allows one when observing u
to place some of these sequences in the decision region U, and the rest
in U7; but this is equivalent to observing n and then choosing Hy or H;
according to the fraction of these conditionally equiprobable sequences
that are placed in Uy and Uy, respectively. For these reasons, we will
hereafter consider only those statistical tests for use in Figure 2.1 that
can be decomposed as shown in Figure 2.2 to operate on the composition
n of the sequence u as their effective observation.



10 Chapter 2. Statistical Hypothesis Testing

We now discuss further details of the three components of the sta-
tistical test model of Figure 2.2.

2.3.1 Composition Analyzer

When we base our decision on the composition of a sequence instead of
on the sequence itself, then we will denote our decision regions by A
and Ai. This will correspond to the decision regions Uy and i/ which
contains all sequences whose composition is in Ny and N}, respectively.
Since N7 = N\ Ny, where A is the set of possible compositions, it is
enough to specify Aj.

2.3.2 Statistic Former

The statistic former in Figure 2.2 is a device that maps the composition
N into a real random variable Sps, which we call the statistic for the
observed sequence U, in that manner that the decision rule is simply a
threshold test on Sy, i.e., for some specified real number T'; we decide
on Hy if Sy < T and we decide on Hy if Spy > T.

Likelihood Statistic

Assume that the DMS probability vector generator can choose only
between two different probability vectors p and p, i.e., @ = {p,p}.
The Neyman-Pearson statistical test of Theorem 2.1 compares the
“likelihood ratio” Pym, (u)/Pyjm, (1) to a threshold T. But this
likelihood ratio can be written equivalently, according to (2.18), as
Pjm, (n)/Pxig,(n). Thus, we can realize the Neyman-Pearson sta-
tistical test by choosing the statistic Sps to be the logarithm of the
likelihood ratio (where log(0) is taken to be minus infinity), i.e.,

Sy = log PNlHl (l'l) = log ﬁ?lﬁgg “ ﬁ?J . (219)
Pnjm, (n) pyipy?-ply’

2.3. Components of a Statistical Test 11

Equivalently,
J b
sy = n;log =L (2.20)
n; 7#0

for the statistic of an observed length M sequence with composition n
when p and p are the ideal source probability vector p and the alter-
native probability vector p, respectively. Written as a random variable,
this likelihood statistic is

J _
Su= 3 NjlogZ. (2.21)
=1 b
Nj#0

Kullback-Leibler Statistic

If X and X are two finite random variables taking values in the same
set X, then the Kullback-Leibler distance D(Px||Px) [4], from the prob-
ability distribution Px to the probability distribution Px is defined to
be

DiPlips) = X Prlo)log . (222)
Pe )0

We define the Kullback-Leibler statistic Sps for the observed length M
sequence with composition N and ideal source probability vector p to
be the quantity

J N,
Sy = N, log —2-. 2.23
2, Nlog 57, (2.23)
N;#0

The empirical probability distribution for U, given the observation u
with composition n, corresponds to the probability vector ﬁn, i.e., the
empirical probability of u; is n;/M for j = 1,2,...,J. The Kullback-
Leibler statistic is identical to the Kullback-Leibler distance from the
empirical probability distribution PU‘Q(.|ﬁn) for U to the probability
distribution Py|q(.|p) for U given the hypothesis Hy, which in turn is
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identical to the Kullback-Leibler distance from the empirical probabil-
ity distribution PN‘Q(.|ﬁn) for the composition N to the probability
distribution Pnq(.|p) for the composition N given the hypothesis Hy.

From the properties of the Kullback-Leibler distance it follows that
Sy > 0 with equality if and only if ﬁN = p, i.e., if and only if the
observed empirical distribution coincides with the ideal source distribu-
tion.

In the sequel, we will make of no use of the Kullback-Leibler statistic.
We mention it here only as an example of another statistic which could
be used for the setting in Figure 2.2. The statistic we will most often
use is the Pearson statistic that we next discuss.

Pearson Statistic

The Pearson statistic Sps [30] for the observed length M sequence with
composition N and ideal source probability vector p is the quantity

J

(N; — Mp;)?
Su=Y L P (2.24)
= My
Note that when p = [%, e %] is the uniform probability vector, then

Sy is just MJ times the square of the FEuclidean distance between
ﬁN and p. The Pearson statistic is sometimes called the “chi-squared
statistic” for reasons that Theorem 2.6 below will make evident. We now
develop some of the properties of the Pearson statistic. The following
theorem is well-known [3, 13, 29].

Theorem 2.2 Let p = [p1,p2,... ,ps] be a probability vector with no
zero components, let q = [q1,q2, - - ,q7] be any probability vector, let M
be a positive integer and let N = [Ny, Na,...,Nj] be a random vector
whose probability distribution is multinomial with parameters M and q,
i.e., Px(n) = %}”m!q?lqu ---q')’ where the components of n are
nonnegative integers that sum to M. Then the random variable

J
= (N; — Mp;)*
=1

2.3. Components of a Statistical Test 13
has mean
E[Su]l=J—-1+61+ (M —1)dn (2.26)
and variance
F2427-2 1K1
=2 -1 - _ _
Var [Sy] = 2(J — 1) 7 +M;pj
2J +8 1 4
+ (8 - M ) (511 — M(S%l — (4 — M) 611(521
1 4J + 12
+ 0 + <4M —4J — 16+ —— ) 5 (2:27)
6 6
- (4M—10+M> 651 + (6—M) 822
+ (4M — 12+ s d
M 32,
where
=S 1P b= L P (2.28)
= P = P
J o\ J o\
P ) R ot J1 (2.29)
=1 P =P
~ (45— )
bag =Y BRI (2.30)
j=1 p;
Theorem 2.2 is proven in [29, page 217].
Remark 2.3 Theorem 2.2 implies immediately that
. E[Sym]
A}l_r)rloo M 621, (231)
. Var [SM]
1 = 4(d21(1 — 6 o 2.32
A/fl_r}n()O i (021 ( 21) + 032) (2.32)
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Corollary 2.4 For the assumptions of Theorem 2.2,

1
7

0<Sy <M
minj_, p;

- 1) . (2.33)

Corollary 2.5 For the assumptions of Theorem 2.2, when q = p, then
E[Su]=J -1, (2.34)

2 _
Var [Sa] = 2(J = 1) — % + % S L (2.35)

Theorem 2.2 gives the exact values for the mean and the variance of the
Pearson statistic Sy, i.e., the exact values for the central moments of
order one and two of the Pearson statistic Spy. What is still missing is
the probability distribution function for the Pearson statistic Sy, which
we now consider.

Let X3,X5,...,X, be independent and identically distributed
(i.i.d.) random variables having a normal probability distribution with
zero mean and unit variance and let x2 = X7 + X7 + ...+ X2. Then
the probability distribution of the random variable x? is called the chi-
squared probability distribution with n degrees of freedom. It is well-
known [8] that the random variable 2 has mean n, variance 2n and
probability distribution function

0 ifr<0

2 _
Pha <= {— L [Teilebdt if 7> 0. (2.36)
2T1(3) 10 =

The following theorem has been known for at least 100 years [30].

Theorem 2.6 For the assumptions of Theorem 2.2, when q = p and
when J > 1, then for every real T
lim P[Sy <7]=P[xj_, <7] (2.37)
M—o00
where the random wvariable X2 has the chi-squared probability distribu-

tion with n degrees of freedom, i.e., Sy is asymptotically chi-squared
distributed with J — 1 degrees of freedom.
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n Py, <7]

1—107% | 1-10=* | 110" 1—107"2 | 1 — 10~ !
1 2393 | 3284 11.82 50.84 59.90
2 27.63 |  36.84 46.05 55.26 64.47
3 30.66 | 40.13 49.54 58.92 68.27
4| 3338|4307 52.67 62.20 71.68
5 35.80 | 45.79 55.56 65.24 74.85
6 38.26 | 48.36 58.29 68.10 77.83
7| 4052 | 5081 60.90 70.84 80.68
8 4270 | 53.17 63.40 73.47 83.42
9 4481 | 5545 65.82 76.01 86.06
10 46.86 | 57.66 68.17 78.47 83.63
11 4887 | 59.82 70.46 80.87 91.13
12 50.83 | 61.93 72.69 83.22 93.57
13 52.75 | 64.00 74.89 85.52 95.96
14 54.64 |  66.03 77.03 87.77 98.31
15 5649 | 68.03 79.15 89.98 |  100.61
16 58.32 | 69.99 81.23 92.16 | 102.87
17 || 6013 |  71.93 83.27 94.30 | 105.10
18 61.91 |  73.84 85.29 96.41 |  107.30
19 63.68 | 7573 87.29 98.50 | 109.46
20 6542 |  77.60 89.26 | 100.56 |  111.61

Table 2.3: Selected values of the chi-squared probability distribution
Junction with n degrees of freedom. Example: P [xi < 23.93] = 1-1075.
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Because a direct proof of this important result does not appear in the
literature, we include a proof on page 92. This proof establishes the
following “rule-of-thumb”.

Rule-of-Thumb 2.7 The probability distribution function of the Pear-
son statistic Sy is well approrimated by the chi-squared probability dis-
tribution function with J — 1 degrees of freedom if J > 1, q = p and

if

M>—0 (2.38)

min;_, p;

Satisfaction of (2.38) guarantees that sufficiently many output digits
from the discrete memoryless source of Figure 2.1 have been taken so
that the probability distribution function for the number of occurrences
of the least likely output symbol, which is a binomial distribution func-
tion with parameters M and min}-]:1 p;, is well approximated by the
normal probability distribution function with same mean and variance.
This approximation of the binomial distribution function by a normal
probability distribution function is the only approximation invoked in
the proof of Theorem 2.6.

Let X, X>5,...,X,, be independent random variables having nor-
mal probability distributions with respective means E [X;], E[X5], ...,
E[X,] and unit variance, let A = E[X;]* + E[X3]* +... + E[X,]* and
let X% , = X{ 4+ X5 +...4+ X. Then the probability distribution of the
random variable x; , is called the non-central chi-squared probability
distribution with n degrees of freedom and with non-centrality parame-
ter A. Tt is well-known [8] that the random variable x? , has mean n+ X,
variance 2(n + 2A) and probability distribution function

0 ifr<0

2 n—2
PPaASTI =94 r o202 oo e Dot e 5

2.39)
t (
0 FERE) =0 BT

The following theorem is well-known [7, 14, 29].

Theorem 2.8 For the assumptions of Theorem 2.2, when q = p +

ﬁc, where ¢ = [c1,ca,...,cy] is any vector in R™ whose components
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sum to 0, and when J > 1 then, for p and c fized and M sufficiently
large so that q is a probability vector and for every real T,

lim P[Sy <71]=P [X?H,z’ ,

M—00 J=1 S5 /pi

< r] (2.40)

where the random wvariable Xfm has the non-central chi-squared prob-
ability distribution with n degrees of freedom and with non-centrality
parameter A, i.e., Sy is asymptotically non-central chi-squared distrib-
uted with J — 1 degrees of freedom and with non-centrality parameter

J 5
23:1 3 /p;-
Theorem 2.8 is proven in [29, page 216].

Note that S37_, ¢2/p; = M6y, where 8,y is defined in (2.29).

J=1"J

We will write ®(7) to denote the probability distribution function
for a normal random variable with zero mean and unit variance, i.e.,

3(r) = ¢L27r/_ e 24t (2.41)

®(7)
109 10®%] 10 10*2] 10"
[ 7] 4753 ] —5.612 [ —6.361 | —7.034 [ —7.651 |

Table 2.4: Selected values of the normal probability distribution func-
tion with zero mean and unit variance. Ezample: ®(—4.753) = 107°.

Theorem 2.9 For the assumptions of Theorem 2.2, when q has no zero
components and q # p, then for every real T

lim P [SM < E[Sy] + 7/ Var [SM]] = (), (2.42)

M—o0

i.€., Vel is asymptotically normally distributed with zero mean

and unit variance.

Theorem 2.9 is proven in [3].
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Corollary 2.10 For the assumptions of Theorem 2.2, when q is a prob-
ability vector whose only non-zero components are the components q,
G2, .-, gy and when 2 < J' < J, then for every real T

P[Sa < 7] = P[Sh, < 7p— M(1—p) (2.43)
where
N Mp ) ; D
SM Z Mp J ) p= ija pj = ;J (244)
J i=1

The proof of Corollary 2.10 is given on page 97.

Note that p’ = [p},p5,...,p'y] and @' = [¢1,¢2, ... ,qr] are proba-
bility vectors with no zero components and that N’ = [Ny, Na, ... ,Ny/]
is a random vector whose probability distribution is multinomial with
parameters M and q'. Therefore Theorem 2.2 applies to the random
variable Sj,.

Corollary 2.11 For the assumptions of Theorem 2.2, when q is a prob-
ability vector with a single non-zero component, say qi, = 1, then

- 1—pr
0 ifr< M—pk‘

1 ifr > Miee (2.45)
- Pk

P[SMST]:{

Proof: For this case, the random variable Sy; of (2.25) reduces to the
constant M 1=2: because the discrete memoryless source with parameter
q will emit only the k-th letter of its output alphabet, i.e., N, = M and

=0for j £k O

The case where the probability vector q has zero components can result
in a “strange” probability distribution for the Pearson statistic Sj;. For
instance, suppose that we have chosen M large enough so that (2.38) is
satisfied. Then for a probability vector q with some components equal
to zero but no component equal to one and with q' = p’, where ¢’
and p’ are as defined after Corollary 2.10, Rule-of-Thumb 2.7 implies
that the probability distribution function of the Pearson statistic Sys
is well approximated by a shifted version of the chi-squared probability
distribution function with J'—1 degrees of freedom. The approximation
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is good since satisfaction of (2.38) implies that M > 50/ min}]:1 p;. This
probability distribution function for the Pearson statistic Sys is much
different from a normal probability distribution function, no matter how
large we choose M, even if q is considerably different from p.

Theorem 2.12 For the assumptions of Theorem 2.2, when q is a prob-
ability vector with at least one zero component, then

- J
minj_; p;

P[SMST]:O fO?" T<M7J
1 —minj_, p;

(2.46)

Proof: If q has a single non-zero component, then (2.46) follows from
Corollary 2.11 because (1 — py)/pr, > (1 — max}.]:1 pj)/maxgzl pj >
minj:1 pj/(l—minj:1 p;j). Otherwise, (2.46) follows from Corollary 2.10
as we now show. Since S); > 0 we have P[Syy < 7] = 0 for 7 <
M(1—p)/p where p is defined in (2.44). But p is bounded by min}-]:1 D)
<p<l- rrlin}]:1 p;- Therefore (1—p)/p > rrlin}]:1 p;/(1— minj:1 D).
O

By choosing M large enough for a given threshold 7" so that

1
M>T <J7 - 1) : (2.47)
min;_, p;

we get P[Sy < T] = 0 for all probability vectors q with zero compo-
nents, i.e., if in the first random experiment of Figure 2.1 a probability
vector q with zero components has been chosen, then the probability
that we make a wrong decision will be zero. It follows that we can re-
strict our attention to the non-pathological case where all components
of the probability vector q are positive. For this case we can well ap-
proximate the probability distribution function of the Pearson statistic
Sy for large Mdo; by a normal probability distribution function with
mean E [Sy/] and variance Var [Sar].

An alternative to approximating the probability distribution func-
tion of the Pearson statistic Sy; by a standard probability distribution
function is to make use of Chebychev’s Inequality to obtain bounds on
this probability distribution function.
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Theorem 2.13 Let X be a finite random variable with mean E[X].
Then for any positive integer n. and for any T # E[X]

PIX<7]> E [((TX—_EE[)E’)](;??] for 7>E[X], (2.48)
PIX<7]< £ [((EX[ );]E_[ii],z)jn] for T <E[X]. (2.49)

The proof of Theorem 2.13 is given on page 99.

Theorem 2.2 gives E[Sy] and E [(Sy — E[Su])?] = Var[Su],
which suffice for computing the bounds on P [Sy; < 7] in Theorem 2.13
for the simplest case when n = 1. To compute the bounds for n > 1,
one needs to know the central moment of Sy; of even order greater than
2. In [13], a method is presented for determining all moments of the
Pearson statistic. With the aid of this method, at least in principle, one
can compute the bounds on P [Sy; < 7] in Theorem 2.13 for any n.

2.3.3 Decision Rule

The decision rule to be used in Figure 2.2 is simple: compare the statistic
Sy with a threshold T, which is fixed in advance, and check whether
Sy is greater than T or not, i.e.,

if Sy < T
- {O if Sar < (2.50)

1 fSy>T.

The threshold is chosen according to the probability of type I error «
one is willing to accept. In the experiments that we report on later, we
chose T to produce an o on the order of 10719,

2.4 Interpreting the Result of Statistical Hy-
pothesis Testing

The result of statistical hypothesis testing as shown in Figure 2.1 is
the binary decision D. The result D = 1 means that hypothesis H;
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is accepted, i.e., we decide that the actual probability vector q of the
source is not the ideal source probability vector p. The probability that
we make an error in this case is the probability of type I error, «, a value
that we can choose to be very small by choosing the threshold T' large
enough. We say that we are (1 — «)-certain that the actual probability
vector of the source is different from the ideal source probability vector.
This part of the interpretation is easy.

Not so easy is the interpretation of the result D = 0. A straight-
forward interpretation of D = 0 is that we accept hypothesis Ho, i.e.,
we decide that the actual probability vector q of the source is the ideal
source probability vector p. The probability that we make an error in
this case is the probability of type II error, 8. Since we generally do not
know the probability distribution Pq g, (q), except in the unrealistic
case when |Q| = 2, we cannot compute the probability of type II error
B as is clear from (2.6). Thus, we cannot attribute a “confidence” value
to our decision. One alternative interpretation would be to to assume a
“worst case” probability distribution Pqz, (q) and to compute an upper
bound on the probability of type II error 8. But if there is probability
vector in the set @ which is only slightly different from the ideal source
probability vector, as will be the case in most realistic situations, then
this upper bound on the probability of type II error will be virtually 1
and therefore of no help.

To obviate these difficulties in the interpretation of the result D = 0,
we introduce the notation of the probability of type II error conditioned
on the event that a particular probability vector q, q # p, has been
chosen in the first random experiment, which we denote by

B(q) = Ppjq(0lq). (2.51)

Then we choose a 3* on the order of 107'° and determine the set of
probability vectors Qp, that contains all probability vectors q which
our statistical test will detect with error probability at most 5* to be
different, from the ideal source probability vector p, i.e.,

Q1 ={q:q€ Q\{p}and B(q) < "} (2.52)

The greater we choose M, the larger will be the set Q;. Because we
have demanded that Q be a finite set, Q1 = Q \ {p} will hold for all
sufficiently large M, i.e., we will, at least in principle, detect any q that
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is different from p. On the other hand if M is too small, then the set
Q7 might be empty.

What we can really conclude from the result D = 0 is that we are
(1 — *)-certain that the actual probability vector of the source is not
in the set Qy, i.e., we are (1 — §*)-certain that the actual probability
vector of the source is in the set Qq, where

Qo =2\ Q1. (2.53)

We summarize the steps in our approach to statistical hypothesis test-
ing. In our statistical testing of block ciphers, we will always proceed
with statistical hypothesis testing in the following manner.

e We choose the probability of type I error a (on the order of 10719)
that we are willing to accept.

e Agsuming that S, is chi-squared distributed with J — 1 degrees
of freedom (where J is the output alphabet size of the discrete
memoryless source), we compute the threshold T" as the smallest
T such that

P[Su >71Q=p] < a, (2.54)

making use of the tabulation of the chi-squared distribution given
in Table 2.3.

o We choose M, the number of digits from the discrete memoryless
source of Figure 2.1, to satisfy (2.38). This ensures that the prob-
ability distribution function of the Pearson statistic Sps for q = p
is well approximated by the chi-squared probability distribution
function with J—1 degrees of freedom. If necessary, we increase M
further so that (2.47) is satisfied. This ensures that, for all q with
zero components, we always make the correct decision and that,
for all q with no zero components, the probability distribution
function of the Pearson statistic Sjs is for large AMJo; well ap-
proximated by the normal probability distribution function with
mean E[Sps] and variance Var [Sj] given by (2.26) and (2.27),
respectively. In order obtain more reliable results we can increase
M still further.
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e We choose a 3* (on the order of 10719) and construct the set of
probability vectors Q; according to (2.52), which we approximate
as

Q1 ~{q:q € Q and q has zero components} U

{a:acQ\{p}and BISy]+ @' (8)y/Var[Sy] > T}
(2.55)

where ® 1 (3*) can be taken from Table 2.4, which is a tabulation
of the normal probability distribution function. We thus obtain
the set of all probability vectors which our statistical test can
with high probability detect to be different from the ideal source
probability vector.

e We perform the statistical hypothesis test and interpret the result
of the test in the following manner: If D = 1, we say that we
are (1 — a)-certain that q # p. I D = 0, we say that we are
(1 — p*)-certain that q ¢ Qi, i.e., we are (1 — 8%)-certain that
q € Qo, where QO = Q\ Ql.



Chapter 3

Algorithmic Attacks on
Block Ciphers

In this chapter we give precise definitions of a block cipher and of a
special block cipher that we will call the complete block cipher. We
show how a cryptanalyst can use algorithms of a certain kind to attack
a block cipher and we establish when a cryptanalyst cannot break a
given block cipher. From these considerations, we formulate two basic
problems that a cryptanalyst can attempt to solve. One of the two basic
problems is to find an algorithm that is distinguishing for a given block
cipher. The other basic problem is to find an algorithm that is key-subset
distinguishing for a given block cipher and for a given decomposition of
the key space. We show that if a cryptanalyst cannot solve at least one
of these two basic problems for a given block cipher, then he cannot
break this block cipher.

25
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3.1 Block Ciphers

Definition 3.1 A (binary, non-expanding) block cipher with block
length N is a bivariate function

e:{0,1}V x 2. = {0,1}" : (z,2) = e.(z), (3.1)

where e is invertible for every z. The quantities x, z and e.(x) are the
plaintext block, the secret key and the ciphertext block, respectively.
The functions e, and e;' are called the encryption function for the
secret key z and the decryption function for the secret key z, respectively.
The set Z. is called the key space. The key length is log,(|Ze]) bits.
To be a practical block cipher, e, and e;! must be easy to compute for
every z. We will always assume that the secret key is chosen uniformly
at random from the key space Z,.

We will write F to denote the set of all invertible functions {0,1}" —
{0,1}". There are |Fy| = 2¥! functions in Fy.

Definition 3.2 The complete block cipher with block length N is the
block cipher

¢: 40,1}V x Ze = {0, 1} 1 (z,2) = &.(2), (3.2)

where for each invertible function f in Fn there is exactly one secret
key z in Zs such that €, = f.

Note that the key space of the complete block cipher with block length N
has cardinality 2! and hence its key length is log, (2V!) ~ 2V (N —1.44)
[8, Stirling’s Formula], which is astronomically large for practical values
of N, say N = 64 or N = 128. Because of our assumption that the
secret key is chosen uniformly at random from the key space Z;, the
complete block cipher of length N is equivalent to what is often called
a “random permutation of {0, 1}".

3.2 Algorithmic Attacks on Block Ciphers

Following Kerckhoffs’s principle [11], we assume that the cryptanalyst
knows the entire mechanism of encipherment except for the value of
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the secret key. We further assume that the cryptanalyst has access
to a black box containing an encryption-function/decryption-function
pair for the actual secret key. The cryptanalyst is allowed to make a
chosen-text attack on the block cipher, i.e., in the course of his attack
he may ask the black box two kind of questions:

e for a plaintext block chosen by the cryptanalyst, what is the cor-
responding ciphertext block?

e for a ciphertext block chosen by the cryptanalyst, what is the
corresponding plaintext block?

In both cases the black box’s answer provides a plaintext-block/cipher-
text-block pair, i.e., an entry in the function table of the encryption
function for the actual secret key. We now distinguish between four
problems a cryptanalyst might try to solve:

e decrypt a ciphertext block chosen uniformly at random, without
asking the black box to decrypt it.

e encrypt a plaintext block chosen uniformly at random, without
asking the black box to encrypt it.

¢ find an additional entry in the function table of the encryption
function beyond those learned by queries to the black box.

e find the secret key.

Later we will consider more precisely what it means to say that one of
these problems is solved.

Figure 3.1 illustrates a probabilistic algorithm for analyzing an in-
vertible function f. We will soon see how the cryptanalyst could use
such an algorithm to solve any one of the above four problems. The
black box is some device (or oracle) that can compute an invertible
function f and its inverse f~!. The deterministic algorithm is allowed
to query either of these two functions by submitting an argument, thus
obtaining an entry in the function table of the invertible function f. In
addition, the deterministic algorithm has access to a random table that
provides all the “randomness” in the probabilistic algorithm. The ran-
dom table is loaded initially with a random string R chosen according
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Black Box

Invertible
Function

,,,,,,,,,,

R request Deter- A
Rando- Random l«—_—__—____ | ministic

miser Tle | ommness | Algorithim

Figure 3.1: Model for a probabilistic algorithm for analyzing an invert-
ible function f.

to a specified probability distribution Pg. The deterministic algorithm
may query the random table to obtain values from this table. At the
end of the execution, the deterministic algorithm outputs its analysis A
of the invertible function f.

Definition 3.3 A probabilistic algorithm A for analyzing an invertible
function f in Fy is an algorithm with the structure shown in Figure 3.1.
The input to the algorithm is a “black box” for the invertible function f
which, when queried with the input X, returns f(X), and, when queried
with the input Y, returns f~(Y). The randomizer chooses a random
string R from the finite set R according to a specified probability distri-
bution Pr and loads the random table with this string. We will always
assume that every r in R has non-zero probability Pr(r). The deter-
ministic algorithm makes queries to the black box and to the random
table, receives the results of these queries, and determines whether to
stop or to continue with queries. When this algorithm stops, it outputs
its analysis A of the invertible function f.

Figure 3.2 shows how a probabilistic algorithm for analyzing an in-
vertible function can be applied to a randomly chosen encryption func-
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Figure 3.2: Model for analyzing o randomly chosen encryption func-
tion of a block cipher e by a probabilistic algorithm for analyzing an
inwvertible function.

tion of a block cipher e. The random variable I’ and the random string
R are the inputs to the deterministic algorithm and the random vari-
able A is the output. The probability distribution of the random string
R is specified by the probabilistic algorithm for analyzing an invertible
function. The probability distribution of the random variable F is spec-
ified by the block cipher e whose encryption function for the chosen
secret key Z is supplied to the probabilistic algorithm for analyzing an
invertible function.

Definition 3.4 A probabilistic algorithm A for analyzing an invertible
function is computationally feasible if its deterministic algorithm is com-
putationally feasible for every invertible function f in Fn and for every
random string v in R, under the assumptions that learning an entry in
the function table of the invertible function f costs a fized small amount
of time (say, the time required to send a request to the black box and to
receive its answer) and that accessing the random table is instantaneous.

Note that the encryption and decryption time is not charged against
the probabilistic algorithm for analyzing an invertible function, i.e., the
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black box is really being treated as an oracle. We did so for two reasons.
First, a cryptanalyst might be able to get access to several black boxes
with the same invertible function in it such that for this cryptanalyst
the encryption and decryption time might be neglected. Second, a slow
block cipher should have no advantage over a fast block cipher just
because it is harder to get the information out of him.

We now return to the four problems a cryptanalyst might try to
solve.

To treat the first three of the four problems mentioned above, we
need to specify an underlying random experiment. For a specified block
cipher e with block length IV and for the complete block cipher é with
block length N, we take this underlying random experiment to be that
of making a (not necessarily equally likely) random choice of either e
or € and then choosing a secret key uniformly at random from the key
space of the chosen block cipher. Let E. and Ey¢ denote the events
that e or €, respectively, is drawn in this experiment. We assume that
the probabilities P [E,] and P[Es] = 1 — P [E,] are unknown. Letting
the random variable F' be the invertible function realized by the chosen
block cipher and the chosen secret key, we have

{z:2z€ 2, and e, = f}]

Pei. () = = (33)
and
Peis () = 5 (3.4)

Let Crax(A) denote the maximum over f in Fy of the maximum num-
ber of distinct pairs [z, y] in the function table of f obtained by calls to
f or f~! when the probabilistic algorithm A is applied to f.

Let A, be a probabilistic algorithm for analyzing an invertible func-
tion that chooses a ciphertext block Y7 uniformly at random, performs
a randomized analysis in which it computes a prediction X; of X; =
F~1(Y1) without asking the black box to compute F~! for the argu-
ment Vi, and then outputs its analysis A = [X;,Y;]. We will say that
A, solves for the block cipher e the problem of decrypting a ciphertext
block chosen uniformly at random without asking the black box to decrypt
it if

P[X, = F*l(Y1)|Ee] > P {X’l = FY(1Y)|E: ], (3.5)
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i.e., if the probability that the plaintext prediction is correct is substan-
tially greater when given that the block cipher e was chosen than when
given that the complete block cipher é was chosen. The probability that
the plaintext prediction is correct when given that the complete block
cipher € was chosen is upper bounded by

Pl = r )] < ComlB)* L (3.6)
Proof of (3.6): During its execution the probabilistic algorithm for
analyzing an invertible function f learned some entries [X,Y] in the
function table of the invertible function f. Let A" denote the set of
arguments X of the learned entries and let ) denote the set of dependent
variables Y of the learned entries. Because the function f is invertible,
|X| = |Y|. Expanding the probability that the plaintext prediction is
correct when given that the complete block cipher é was chosen gives

<! pr|Y|/2Y

N ‘/_’%
P = PR 00)IE] = P [% = £ 0l €, 5] PTG € VIED

P[X - (Yl)lmzyE] Vi & VIE:].
| —

1—p-|V]/2V
(3.7)

Sl/(QN*IJ)\)

P[Y; € Y|E;] is zero if all queries to the black box are queries to the
function f~! it is|Y|/2% if all queries to the black box are queries to the
function f and it is p-|Y|/2" for some p,0 < p < 1, in general. If' Vi € Y
and if the complete block cipher € was chosen, then any X L in {0, 1}
X has probability 1/(2¥ — |X|) to be correct and any X; in X has

probability 0 to be correct. Therefore P [Xl =F W) ¢ y,Eé] <
1/(2N — |X]). Hence we get
] 1o

P& =F (M)E] <piy+

% o (3.8)

The maximum on the right side is obtained when p is 1 such that we
get
VI+1

IN

P& = P )IE] < (3.9)
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And finally with |Y| < Cpax (4, ), which hold according to the definition
of Cmax(.), we obtain (3.6). O

Let A, be a probabilistic algorithm for analyzing an invertible func-
tion that chooses a plaintext block X5 uniformly at random, performs a
randomized analysis in which it computes a prediction Voof Ya=F (X2)
without asking the black box to compute F for the argument X5, and
then outputs its analysis A = [X,, V3]. We will say that A, solves for
the block cipher e the problem of encrypting a plaintext block chosen
uniformly at random without asking the black box to encrypt it if

P[fz = F(X:)|E.] > P [V = F(X)|Ee] (3.10)

i.e., if the probability that the ciphertext prediction is correct is substan-
tially greater when given that the block cipher e was chosen than when
given that the complete block cipher ¢ was chosen. The probability that
the ciphertext prediction is correct when given that the complete block
cipher € was chosen is upper bounded by

Py, = F(X2)|E5] < Cmax(fg) +1

SN (3.11)

The proof of (3.11) is entirely similar to the proof of (3.6).

Let A; be a probabilistic algorithm for analyzing an invertible func-
tion that outputs a prediction A = [Xg, Yg,] of an entry in the function
table of F' that is different from any entry in the function table of F'
obtained by queries to the black box. We will say that A; solves for the
block cipher e the problem of finding an additional entry in the function
table of the encryption function if

PV = F(%)|E.| > P [V = F(X3)|Ee] (3.12)

i.e., if the probability that the plaintext/ciphertext pair prediction is cor-
rect is substantially greater when given that the block cipher e was cho-
sen than when given that the complete block cipher é was chosen. The
probability that the plaintext/ciphertext pair prediction is correct when
given that the complete block cipher é was chosen is upper bounded by

1

_ 1
2N - Cmax (Ag) (3 3)

P Vs = F(Xs) B <
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Proof of (8.13): During its execution the probabilistic algorithm for
analyzing an invertible function f learned some entries [X,Y] in the
function table of the invertible function f. Let X denote the set of
arguments X of the learned entries and let ) denote the set of dependent
variables Y of the learned entries. Because the function f is invertible,
|X| = |V|. Since the complete block cipher was chosen any pair [X3, V3]
with X3 ¢ X and Y3 € Y has probability 1/(2Y — |X]) to be an entry in
the function table of f and any other pair [X3, Y3] has probability 0 to

be an entry in the function table of f. Therefore P [173 = F(X3)|Eé <

/(2N — |X]). With |X| < Cmax(A;), which hold according to the
definition of Chax(.), we obtain (3.13). O

To treat the fourth and last of the four problems mentioned above,
we change to a different underlying random experiment. For a specified
block cipher e with block length N, we take this underlying random
experiment to be that of choosing a secret key Z for e uniformly at
random from the key space Z.. For this random experiment, let A,
be a probabilistic algorithm for analyzing an invertible function that
outputs a prediction A = Z of the actual secret key Z. We will say that
A, solves for the block cipher e the problem of finding the secret key if

- 1
P[Z:Z} > 3.14
2] (319
i.e., if the probability that the secret key prediction is correct is sub-
stantially greater than for a random prediction of the secret key.

Definition 3.5 A cryptanalyst cannot break the block cipher e if this
cryptanalyst knows no computationally feasible probabilistic algorithm
for analyzing an invertible function that (1) solves for the block cipher
e the problem of decrypting a ciphertext block chosen uniformly at ran-
dom without asking the black box to decrypt it, or that (2) solves for the
block cipher e the problem of encrypting a plaintext block chosen uni-
formly at random without asking the black box to encrypt it, or that (3)
solves for the block cipher e the problem of finding an additional entry
in the function table of the encryption function, or that (4) solves for
the block cipher e the problem of finding the secret key. The cryptana-
lyst can break the block cipher e if he knows a computationally feasible
probabilistic algorithm for analyzing an invertible function that solves
for the block cipher e at least one of these four problems.
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Ezample: The complete block cipher with block length N = 2 has
a key space with cardinality 22! = 24. A cryptanalyst could design a
probabilistic algorithm for analyzing an invertible function that asks the
black box to see 3 of the 4 entries in the function table of the encryption
function for the actual secret key and then efficiently computes the
actual secret key. This cryptanalyst would know a computationally
feasible probabilistic algorithm for analyzing an invertible function that
solves for the complete block cipher with block length 2 the problem
of finding the secret key and could therefore break the complete block
cipher with block length 2. Note that it is impossible to solve any of
the first three of the four problems mentioned above for any complete
block cipher.

Based on this notion of breaking, we start now to build a bridge to the
next chapter, which is about statistical tests for block ciphers. We now
formulate a sufficient, but not necessary, condition for a cryptanalyst
to be unable to break a given block cipher e. This sufficient condition
can be tested directly by statistical tests as will be shown in the next
chapter.

Definition 3.6 A probabilistic algorithm for analyzing an invertible
function is distinguishing for the block cipher e if (in the random ex-
periment described before (8.3)) it outputs a binary decision A = D,
D € {0,1} such that

P[D=1|E]>P[D=1|E], (3.15)

i.e., if the probability that the probabilistic algorithm for analyzing an
invertible function outputs a 1 is substantially greater when given that
the block cipher e was chosen than when given that the complete block
cipher € was chosen.

Lemma 3.7 If a computationally feasible probabilistic algorithm A for
analyzing an invertible function is known that (1) solves for the block
cipher e the problem of decrypting a ciphertext block chosen uniformly
at random without asking the black box to decrypt it, or that (2) solves
for the block cipher e the problem of encrypting o plaintext block chosen
uniformly at random without asking the black box to encrypt it, or that
(8) solves for the block cipher e the problem of finding an additional
entry in the function table of the encryption function, then a compu-
tationally feasible probabilistic algorithm A’ for analyzing an invertible
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function can be efficiently constructed that is distinguishing for the block
cipher e.

The proof of Lemma 3.7 is given on page 101.

{21,25,..., 21} is called o decomposition (or “partition”) of the
non-empty set Z if the sets 2y, Z,, ..., Zp are non-empty, pairwise
disjoint subsets of the set Z and if the union of the sets 2y, 25, ..., Z,
is equal to the set Z.

Definition 3.8 A probabilistic algorithm for analyzing an invertible

function is key-subset distinguishing for the block cipher e and for the

decomposition {Z.1, Z.z2,... ,Z,c} of the key space Z, if il outpuls an

L-ary decision A=W, W € {1,2,...,L} such that
L |Zel|

P[Z € Zw] > miax 7

(3.16)

i.e., if the probability that the secret key lies in the predicted subset of
the decomposition is substantially greater than for a prediction that the
secret key lies in the largest subset.

Ezample: For L =1 the only decomposition of a key space Z, is {Z.1}
with Z,1 = Z,.. For this decomposition of the key space the right part
of (3.16) is equal to 1. Since no probability can be greater than 1
there exists also no probabilistic algorithm for analyzing an invertible
function that is key-subset distinguishing for a block cipher e and for
the decomposition {Z.1} of the key space Z..

Ezample: Assume a block cipher e has a key space Z, = {0,1}¥ and
assume a probabilistic algorithm A for analyzing an invertible function
outputs for the block cipher e the value of the first secret key bit with
probability substantially greater than 1/2. Then let {Z.1, Z.2} be the
decomposition of the key space Z. where Z,:1 contains all secret keys
with the first secret key bit equal to 0 and Z.2 contains all secret keys
with the first secret key bit equal to 1. For this decomposition of the
key space the right part of (3.16) is equal to 1/2. Simply by adding 1
to the output of the algorithm A one obtains a probabilistic algorithm
A for analyzing an invertible function that is key-subset distinguishing
for the block cipher e and for the decomposition {Z.1, Z.2} of the key
space Z..
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Lemma 3.9 If a computationally feasible probabilistic algorithm A for
analyzing an invertible function is known that solves the problem of
finding the secret key for the block cipher e, then (1) a decomposition
{201, 2e2,..., 2.0} of the key space Z. can efficiently be constructed
and (2) a computationally feasible probabilistic algorithm A for analyz-
ing an invertible function that is key-subset distinguishing for the block
cipher e and for this decomposition of the key space can be efficiently
constructed.

The proof of Lemma 3.9 is given on page 103.

Theorem 3.10 If a cryptanalyst knows neither a computationally feasi-

ble probabilistic algorithm for analyzing an invertible function that is dis-

tinguishing for the block cipher e nor a decomposition {Z., Z2,... , 2.1}
of the key space Z. and a computationally feasible probabilistic algorithm

for analyzing an invertible function that is key-subset distinguishing for

the block cipher e and for this decomposition of the key space, then this

cryptanalyst cannot break the block cipher e.

Proof: We prove this by showing that the contrapositive is true. The con-
trapositive is: if a cryptanalyst can break the block cipher e, then this
cryptanalyst knows either a computationally feasible probabilistic algo-
rithm for analyzing an invertible function that is distinguishing for the
block cipher e or a decomposition {Z.1, Z.2, ..., Z.r } of the key space
Z. and a computationally feasible probabilistic algorithm for analyzing
an invertible function that is key-subset distinguishing for the block
cipher e and for this decomposition of the key space. But this follows
directly from combining Definition 3.5 with Lemma 3.7 and Lemma 3.9.
O

Theorem 3.10 states that a cryptanalyst cannot break a block cipher e
as long as he is not able to solve at least one of two basic problems for
the block cipher e. One may ask whether it is possible to reduce one of
these two basic problems to the other so that one could focus on trying
to solve only one of the basic problems. To demonstrate that such a
reduction does not exist, we give two examples. In each example we
present a block cipher that can easily be broken and for which it is easy
to solve one of the two basic problems while it is impossible to solve the
other basic problem.
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Ezxample: Let e be a practical block cipher whose encryption func-
tions are all identical. Since the block cipher e is practical, the sin-
gle encryption function e, is easy to compute for every secret key z.
Let A; be a probabilistic algorithm for analyzing an invertible func-
tion that chooses a ciphertext block Y7 uniformly at random, computes
X, = e, (Y1) for any z and outputs its analysis A = [Xl,Yl]. Clearly
A, is a computationally feasible probabilistic algorithm for analyzing
an invertible function that solves for the block cipher e the problem
of decrypting a ciphertext block chosen uniformly at random without
asking the black box to decrypt it. Lemma 3.7 then implies that one
can also construct a computationally feasible probabilistic algorithm A}
for analyzing an invertible function that is distinguishing for the block
cipher e. Similar arguments show that one can find a computationally
feasible probabilistic algorithm A, for analyzing an invertible function
that solves for the block cipher e the problem of encrypting a plain-
text block chosen uniformly at random without asking the black box to
encrypt it and that one can construct a computationally feasible prob-
abilistic algorithm A; for analyzing an invertible function that solves
for the block cipher e the problem of finding an additional entry in the
function table of the encryption function. However, since analyzing the
single encryption function e, reveals no information about the chosen
secret, key z, there does not exist a probabilistic algorithm for analyz-
ing an invertible function that is key-subset distinguishing for the block
cipher e and for any decomposition of the key space Z. nor does there
exist a probabilistic algorithm for analyzing an invertible function that
solves for the block cipher e the problem of finding the secret key.

Ezample: Let e be the complete block cipher with block length
N = 2. In the example given on page 34, we showed how a com-
putationally feasible probabilistic algorithm for analyzing an invertible
function could be constructed that solves the problem of finding the se-
cret key. Lemma 3.9 then implies that one can find a decomposition of
the key space and can construct a computationally feasible probabilistic
algorithm for analyzing an invertible function that is key-subset distin-
guishing for the block cipher e and for this decomposition of the key
space. However, since the block cipher e is the complete block cipher
€, the events E, and E3 are the same event. Therefore there exists no
probabilistic algorithm for analyzing an invertible function that (1) is
distinguishing for the block cipher, or that (2) solves for the block ci-
pher e the problem of decrypting a ciphertext block chosen uniformly at
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random without asking the black box to decrypt it, or that (3) solves for
the block cipher e the problem of encrypting a plaintext block chosen
uniformly at random without asking the black box to encrypt it, or that
(4) solves for the block cipher e the problem of finding an additional
entry in the function table of the encryption function.

Theorem 3.10 provides a sufficient condition for a cryptanalyst to
be unable to break a given block cipher e. To demonstrate that this
sufficient condition is not also a necessary one, we give two examples.
In each example, we show a situation where not fulfilling the sufficient
condition does not imply that the cryptanalyst can break the block
cipher e.

Example: Assume that the only things a cryptanalyst knows about
a block cipher e are the entire mechanism of enciphering (except for
the value of the secret key) and a computationally feasible probabilis-
tic algorithm A that is distinguishing for the block cipher e. Since the
cryptanalyst already knows that he is analyzing a randomly chosen en-
cryption function of the block cipher e, the probabilistic algorithm A
reveals no additional information to him.

Ezample: Let e be a block cipher with key space Z. = {0,1}¥ and
let {Z.,,2Ze,} be a decomposition of the key space Z. where Z., con-
tains all secret keys with first key bit equal to 0 and where Z., contains
all secret keys with first key bit equal to 1. Assume that the only things
a cryptanalyst knows about the block cipher e are the entire mechanism
of enciphering (except for the value of the secret key) and a computa-
tionally feasible probabilistic algorithm A for analyzing an encryption
function e, that outputs a binary decision A = W, W € {1,2}, such
that z € Zy for all secret keys z in the key space Z.. Note that the prob-
abilistic algorithm A uniquely determines the value of the first key bit
of the secret key z. According to Definition 3.8 and since probability 1
is significantly greater than probability 1/2, the probabilistic algorithm
A is a computationally feasible probabilistic algorithm for analyzing an
invertible function that is key-subset distinguishing for the block cipher
e and for the decomposition {Z,,, Z.,} of the key space Z.. However,
the cryptanalyst obtains no information about the value of the remain-
ing K — 1 bits of the secret key and therefore cannot do better than
probability 2'¥ of guessing the correct value of the secret key. If the
key length is large enough, e.g. K = 256, the cryptanalyst does not
know a probabilistic algorithm for analyzing an invertible function that
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solves for the block cipher e the problem of finding the secret key.

Shannon [33] focused on probabilistic algorithms for analyzing an
invertible function that are key-subset distinguishing for a block cipher
and for a decomposition of the key space. Differential and linear crypt-
analysis make use of a feature of a block cipher that can be used to
construct a probabilistic algorithm for analyzing an invertible function
that is distinguishing for this block cipher.



Chapter 4

Statistical Testing of Block
Ciphers

In this chapter we describe an approach to finding an algorithm that is
distinguishing for a given block cipher and an approach to finding an
algorithm that is key-subset distinguishing for a given block cipher and
a given decomposition of the key space.

This chapter is organized as follows. Section 4.1 gives the motiva-
tion for performing statistical testing of block ciphers. In Section 4.2
we show that the core of any algorithm that is distinguishing for some
block cipher is an algorithm for extracting a feature from an invertible
function. We then formulate an approach to finding an algorithm that is
distinguishing for a given block cipher by first designing many different
algorithms for extracting a feature from an invertible function and then
testing which of these algorithms behave differently when applied to ran-
domly chosen encryption functions of a given block cipher as compared
to when they are applied to randomly chosen encryption functions of the
complete block cipher. In Section 4.3 we consider certain block ciphers
that can be derived from a given block cipher. We show under what
conditions it makes sense to analyze the dual of a block cipher by the
approach described in Section 4.2. We then formulate an approach to
finding an algorithm that is key-subset distinguishing for a given block
cipher and a given decomposition of the key space by first considering

41
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many different subsets of the key space of a given block cipher and then
analyzing reduced-key-space versions of the block cipher by the approach
described in Section 4.2.

4.1 Why Statistical Testing

Statistical testing of block ciphers is intended to provide tests that are
capable of analyzing any practical block cipher, no matter what the
internal structure of the block cipher may be. Therefore such tests
should analyze a block cipher based only on the input-output-behav-
ior of its bivariate function e, where the bivariate function e is as
defined in (3.1). To demonstrate how little of the function table of
the bivariate function e can be considered by a test, we give an ex-
ample. Suppose a test analyzes a block cipher e with block length
N = 64 and key length K = 128. Suppose further that the test has
access to 1 billion processors, each of which can compute entries in the
function table of the bivariate function e at the speed of 1 billion en-
tries per second. Finally suppose that the test has 1000 years time to
present the result of its analysis. How many entries in the function
table of the bivariate function e can the test consider for its analysis?
The answer is 10° devices -10° entries/second/device - 1000 years -32-
108 seconds/year = 2% entries. But the function table of the bivariate
function e has a total of 2V - 2K = 2196 entries. Therefore the test is
forced to present the result of its analysis of the block cipher e after
having seen only 1/2!%! of the entries in the function table of the bivari-
ate function e. This example makes it obvious why the nature of such
a test can only be statistical.

A cryptanalyst can use statistical testing of a block cipher as a first
step towards breaking a block cipher. The cryptanalyst can run several
tests on the block cipher and, if some of these tests show a non-ideal
behavior of the block cipher, then he can analyze the internal structure
of the block cipher to see what caused the non-ideal behavior. This
might give him ideas about how he could break the block cipher.

A cryptographer can use statistical testing of a block cipher to con-
vince himself that a block cipher he designed at least does not have the
weaknesses that he tested.
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And finally, someone who has to evaluate block ciphers can use sta-
tistical testing of block ciphers to compare the behavior of different
block ciphers without the need to analyze their internal structure.

4.2 Testing Model

In this section we simplify the task of finding a computationally feasi-
ble probabilistic algorithm for analyzing an invertible function that is
distinguishing for the block cipher e. The core of any probabilistic algo-
rithm for analyzing an invertible function that is distinguishing for the
block cipher e is a probabilistic algorithm for analyzing an invertible
function whose output has some dependency on the analyzed invertible
function. Because of this dependency on the analyzed invertible func-
tion, we call such a probabilistic algorithm for analyzing an invertible
function a probabilistic algorithm for extracting a feature from an in-
vertible function. Note that a probabilistic algorithm for extracting a
feature from an invertible function is independent of the block cipher e.

We will show how a probabilistic algorithm for extracting a feature
from an invertible function can be embedded in a testing model that
contains the block cipher e and that can be used to test whether the
probabilistic algorithm for extracting a feature from an invertible func-
tion can be used to build a probabilistic algorithm for analyzing an
invertible function that is distinguishing for the block cipher e.

The essential task is to design probabilistic algorithms for extracting
a feature from an invertible function and then to test which of them can
be used to build a probabilistic algorithm for analyzing an invertible
function that is distinguishing for the block cipher e. The testing is done
so that, if one concludes that a probabilistic algorithms for extracting a
feature from an invertible function can be used to build a probabilistic
algorithm for analyzing an invertible function that is distinguishing for
the block cipher e, then one also knows how to build a probabilistic
algorithm for analyzing an invertible function that is distinguishing for
the block cipher e.

In order to have an additional degree of freedom, we allow our prob-
abilistic algorithms to extract a feature from a sequence of G invertible
functions, instead of from only a single invertible function.
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Embedding a probabilistic algorithm for extracting a feature from
a sequence of G invertible functions in a testing model that contains
the block cipher e will, for G > 1, not lead directly to a probabilistic
algorithm for analyzing an invertible function that is distinguishing for
the block cipher e. But it might suggest how to design a probabilistic
algorithm for extracting a feature from an invertible function that then
leads to a probabilistic algorithm for analyzing an invertible function
that is distinguishing for the block cipher e.

Black Box

Invertible
Functions

,,,,,,,,,,,,,,

R request Feature U
Rando- Random - ———————4 Extracting

mizer Table

randomness |Algorithm

Figure 4.1: Model for a probabilistic algorithm for extracting a feature
from a sequence of G invertible functions [f[1], f[2],..., fIG]]

Definition 4.1 A probabilistic algorithm U for extracting a feature
from a sequence of G invertible functions [f[1], f[2],..., f[G]] in F§
is an algorithm with the structure shown in Figure 4.1. The input to
the algorithm is a “black box” for the sequence of G invertible func-
tions [f[1], f[2], ..., fIG]] which, when queried with the inputs X and
I, returns f[I)(X), and, when queried with the inputs Y and I, returns
fIII7Y(Y). The randomizer chooses a random string R from the finite
set R according to a specified probability distribution Pgr and loads the
random table with this string. We will always assume that every r in
R has non-zero probability Pr(r). The feature extracting algorithm is
a deterministic algorithm that makes queries to the black box and to
the random table, receives the results of these queries, and determines
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whether to stop or to continue with queries. When this algorithm stops,
it outputs its extracted feature U from the sequence of G invertible
functions [f[1], f12], ..., fIG]]. We will always assume that U takes on
a value in the finite set {ji1, fio,... ,fij}. The function computed by the
feature extracting algorithm will be called the feature extracting function

U(f,r). We require that the probability distribution of the extracted fea-
ture U has some dependency on the sequence of G invertible functions
[f1], f12],. .., fIG]], i.e., the probability distribution of the extracted
feature U is not identical for all sequences of G invertible functions

f =101, 712}, , FIG]]

R Feature U
Rapdo— Extracting
fzer Algorithm

Figure 4.2: Simplified diagram for a probabilistic algorithm for
extracting a feature from a sequence of G invertible functions

L, 2l - S1GT

Figure 4.2 shows a simplified diagram for a probabilistic algorithm
for extracting a feature from a sequence of invertible functions f. The
feature extracting algorithm computes the feature extracting function
U(f,r), ie., for a given random string  and a given sequence of in-
vertible functions f, the feature extracting algorithm deterministically
computes the extracted feature @ = U(f,r). The random string R is
chosen from the finite set R according to the probability distribution
Pp as specified by the probabilistic algorithm for extracting a feature

from a sequence of invertible functions.

To describe a probabilistic algorithm for extracting a feature from
a sequence of invertible functions, it is enough to define the feature
extracting function U(f,r), the finite set R, and the probability distri-
bution Pg.

Ezample: Assume the feature extracting function has the structure

U(f,r) = h(f[1](r)), where the function h is not constant. This is a valid
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feature extracting function since its value depends on the sequence of
invertible functions f. If this feature extracting function would be com-
bined with a randomizer with R = {0,1}" and Pg(r) = 2~ then this
combination would not give a probabilistic algorithm for extracting a
feature from a sequence of invertible functions since the probability dis-
tribution of the extracted feature would be independent of the sequence
of invertible functions f. The reason for this is that a uniform distribu-
tion at the input of an invertible function gives a uniform distribution at
the output. On the other hand, combining the same feature extracting
function as above with a randomizer with R = {0}" and Pgr(r) = 1
gives a probabilistic algorithm for extracting a feature from a sequence
of invertible functions.

We now embed a probabilistic algorithm for extracting a feature
from a sequence of invertible functions into the testing model that con-
tains the block cipher e. A probabilistic algorithm for extracting a fea-
ture from a sequence of invertible functions has only one input, namely
the sequence of invertible functions. In the testing model that contains
the block cipher e, we choose M sequences of invertible functions, where
each invertible function is an encryption function of the block cipher e
chosen independently at random. For each of these M sequences of in-
vertible functions, the probabilistic algorithm for extracting a feature
from a sequence of invertible functions, with such a sequence of invert-
ible functions as its input, is independently executed M times. This
produces a total of M - M extracted features which will then be ana-
lyzed. Figure 4.3 shows what is done for each of these M sequences of
invertible functions and Figure 4.4 shows the complete testing model
where all M sequences of invertible functions are used.

Figure 4.3 shows in its first “row” how one sequence of invertible
functions is generated. For g = 1,2,...,G, the memoryless uniform
secret, key generator box chooses independently and uniformly at ran-
dom a secret key Z[g] from the key space Z. of the block cipher e.
The block cipher box takes a secret key Z[g] and outputs the invertible
function F[g] realized by the the encryption function ezf,. The framer
for G invertible functions box collects G such invertible functions and
frames them into one sequence of invertible functions F. This sequence
of invertible functions F is one input to the feature extracting algorithm
box.

For m = 1,2,...,M, the memoryless randomizer box chooses a
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Figure 4.3: Model for M independent ezecutions of a probabilistic
algorithm for extracting o feature from a sequence of G invertible func-
tions [F[1], F[2], ..., F[G]] and for the analysis of the extracted features,
where F[1], F[2], ..., F|G] are randomly chosen encryption functions
of a block cipher e.



48 Chapter 4. Statistical Testing of Block Ciphers

random string R[m] from the set R independently and according to
the probability distribution Pgr . This random string R[] is the other
input to the feature extracting algorithm box. The feature extracting al-
gorithm box then computes the feature extracting function U(F, R[n])
and outputs the extracted feature U[/n]. The framer for M extracted
features box collects M such extracted features and frames them into
one sequence of extracted features U.

Since the random strings R[1], R[2), ..., R[M] are generated indepen-
dently, we do not distinguish between sequences of extracted features
which differ only by a rearrangement of their extracted features. For
this reason, the sequence of extracted features U is reduced by the com-
position analyzer box to its composition N in the following manner:

The composition of the sequence @ = [a[l], a[2],... ,a[M]] with
alm] € {fu,fiz,...,j5} for m = 1,2,...,M is the vector n =
[R1, T2, ... , 7t ;] where fi; is the number of occurrences of the symbol

fi; in @ for j=1,2,...,J. Note that Z;’zl fi; = M. Note further that
two sequences have the same composition if and only if they differ only
by a rearrangement of their symbols.

| i [ v ]
N[Muovoa"'70] 1
[M—].,].,O,...,O] 2

[0770717‘]\2?1] Hi-1
[0,...,0,0, ] 1Ly

Table 4.1: Invertible packer: mapping from compositions n to symbols
u and vice versa.

The composition N is packed by the invertible packer box into the
symbol U. This packing is done so that it is invertible. Table 4.1
shows how compositions n are mapped to symbols u and vice versa.
The number J of possible compositions is the same as the number of
combinations with repetitions of M elements from J elements, i.e.,

J:(jJr]‘g_l). 4.1)
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Because of our assumption that the secret key is chosen uniformly at
random from the key space we do not distinguish between block ciphers
with block length N which differ only by an invertible renaming of the
secret keys. Therefore there are (‘fN |f1_1) different block ciphers with

a key space with cardinality 1 and there are (¥~/271) different block
ciphers with a key space with cardinality 2 and so on. Hence there are
countable infinitely many block ciphers with block length N. We will
write &y to denote the countable infinite set of block ciphers with block
length N.

To compare the behavior of different block ciphers we need to specify
an underlying random experiment. Let £ be a given finite subset of the
set &y of block ciphers with block length N that contains at least the
complete block cipher €. We take this underlying random experiment
to be that of making a (not necessarily uniform) random choice of a
block cipher from the finite set of block ciphers £5. The probability
distribution according to which block ciphers are chosen from &} is
assumed to be unknown. Let E. denote the event that the block cipher
e is drawn in this random experiment. Letting the random variable F
be the invertible function realized by the chosen block cipher e and a
secret key chosen uniformly at random from the key space of the block
cipher e, we have

H{z:z€ Z. and 67—f}|
|2l

Since the sequence of invertible functions F in Figure 4.3 is a sequence
of GG independently chosen invertible functions F', we have

Ppip ([F11], f12; -, FIG]]) = Prip (f1]) - Prig. (f12]) - Ppis. (f[(f]g)j

Ppp, (f) = (4.2)

For the complete block cipher &, (4.3) reduces to

Prie, ([F11], £12),- .-, FIG]) = 1

W. (4.4)

The probability that, for a given sequence of invertible functions f, the
output of the feature extracting algorithm takes on a particular value @
is

Pyp(ilf) = Y Pypglilfr)Pr(r) = > Pa(r (4.5)
r€ER _TER
U(f,r)=4a
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where we have used the fact that Pypp(alfr) is 1 for @ = U(f,r) and 0

otherwise. In terms of the composition N = fi = [1, M2, ... , 7 ] of the

observation U = @ = [a[1], @[2), ... ,a[M]] in Figure 4.3, we have
P p(8[f) = Pgp (@ [£)™ - Pyp(fl)™ - Py p(agI)™7 (4.6)

since the sequence U can be viewed as being generated by a discrete
memoryless source with the (single-letter) probability distribution (4.5).
The probability of a particular composition N = n conditioned on F = f
is obtained by summing Pﬁ‘F(ﬁ) over all  with this composition, which
gives

N M!
PN\F(n|f) =z

umF(ﬁlf) (4.7)

where the fraction on the right is the multinomial coefficient that gives
the count of the number of sequences @ with the composition n. Sum-
ming over all invertible functions gives

Pg(d) = ) Pyp(ilf)Pe(f) (4.8)
rer§

and conditioning on the event that the block cipher e has been chosen
gives

N\E Z PN\FE (n|f)PF\E (£). (4.9)
feFg

But given F = f| N has no further dependence on E. so that

Py, ( Z Pgp(0|f) Py, (£). (4.10)
feFg

Sometimes it is easier to compute Py p (i) if an intermediate random

variable Q is introduced. For a given probabilistic algorithm U for
extracting a feature from a sequence of invertible functions, the proba-
bility distribution of the random variable U depends only on the chosen
sequence of invertible functions f. We write this probability distribution
as the probability vector

Qe = [PU\F(ﬁ1|f)7Pf]\F(ﬁ2|f),... Py (fi516))| - (4.11)
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Since the sequence of invertible functions is chosen from a finite set F§,
there are finitely many probability vectors in

O={ar:ferFy}. (4.12)

The intermediate random variable Q takes on a value in the finite set
Q according to the probability distribution

P (@)=Y Prp.(f (4.13)

fe]-‘N
ar=4

To write PN\ g, () in terms of the probability distribution of the interme-

diate random variable Q instead in terms of the probability distribution
of the random variable F', we follow a derivation entirely similar to that
which led to (4.10) to obtain

. M! A _
PN\Ee(n> = Z PRI _’q11q2~ ...qu .PQIEe(q)‘ (4-14)
- Q 1.n2....nJ_
qeE

Because U = v and N = ii are the same event, it follows that
Py, (u) = PN\EC<ﬁ)' (4.15)

For a given probabilistic algorithm U for extracting a feature from a
sequence of invertible functions and for a given value of the parameter
M, the probability distribution of the random variable U depends only
on the chosen block cipher e. We write this probability distribution as
the probability vector

qe = [Pyie, (), Puip. (42), - - - » Poje. (11)] - (4.16)

What remains to be done is to execute the random experiment shown
in Figure 4.3 M times for the same chosen block cipher e. This is shown
in Figure 4.4. The upper part of Figure 4.4 is the same as that of Fig-
ure 4.3 except that all random variables have the additional index m
which takes on the values 1,2,... , M. Instead of one symbol U, there
are now M symbols generated, viz., U[1], U[2], ..., U[M]. The framer
for M symbols box collects M such symbols and frames them into a
single sequence of symbols U. The memoryless uniform secret key gen-
erator and the memoryless randomizer are assumed to be independent
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random sources. Therefore the sequence U can be viewed as being gen-
erated by a discrete memoryless source with (single-letter) probability
distribution qe.

The ideal source probability vector is obtained when the complete
block cipher € is chosen, i.e.,
P = q;. (4.17)
Since the block cipher is chosen from a finite set of block ciphers £y,
there are finitely many probability vectors in

Q={q.:e€&y}. (4.18)

Note that we are now where we started in Chapter 2. In a first ran-
dom experiment the probability vector q is chosen from the finite set Q
according to some unknown probability distribution Pg(q). Then, in a
second random experiment, the sequence u is generated by a discrete
memoryless source with (single-letter) probability distribution q. The
question is whether the generated sequence u looks different than a se-
quence that a discrete memoryless source with (single-letter) probability
distribution p would have generated or not. The answer to this question
is given in Chapter 2. Therefore the last three boxes in Figure 4.4 are
the three boxes of the statistical test shown in Figure 2.2.

We now discuss the set Q. What is always required to be known
is the ideal source probability vector p which is equal to qg. This we
need to able to computed for the given probabilistic algorithm U for
extracting a feature from a sequence of invertible functions and for the
values of the parameter M we are using. In Section 5.2 we show how
this is done for a given example. Suppose we are analyzing the block
cipher é&. Then we can try to compute qs. In Section 5.2 we also give

an example for which this is possible. If we can compute gz, then we
define

and compute the set Q according to (4.18). If the set Q has cardinality
1, i.e., if g5 = qg, then the given probabilistic algorithm U for extracting
a feature from a sequence of invertible functions with the given para-
meter M cannot be used to construct a probabilistic algorithm that is

4.2. Testing Model 53
Memoryless 77, Block F Framer | F[m]=
Y : m,g mj|=
Uniform m. gl Cipher e [m.g] for G (]
Secret Key Flm,g] = Invertible [F[m, 1],
Generator €Zm,g] Functions | plm @]
———————————————————————— e
Probabilistic M%mordyless Rlm, ] ngif&ﬁg Ulm, ]
: FT o ando- ‘
Algorithm U | inizer Algorithm | '
,,,,,,,,,,,,,,,,,,,,, Data Collection
Data Analysis
Framer | ¥Ormi= | ¢ - | Nlm] = Ulm
for M | _ m] s(i)i?(i? _ ] Invertible ]
Extracted [U[m,1],..] Analyzer |[V[mly,...| Packer
Features | 7 ~ <
) [va]] 7N[m]f]
Framer U= Compo- = o Swm
. Statistic
for M T sition N T
Symbols [U[1],... Analyzer [Ny,.. ormer
,UIM]] VU]
. D
Decision
Rule

Figure 4.4: A model for statistical testing of a block cipher e.
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distinguishing for the block cipher é. If the set Q has cardinality 2, i.e.,
if qz # qe, then we do not need to run a statistical test at all since we
can compute the threshold T and the sequence length M, according to
the results of Chapter 2, for which the statistical testing of the block
cipher € shown in Figure 4.4 shows the difference between qz and qz. If
we cannot compute g, then we define £3 such that it contains the com-
plete block cipher €, the actual block cipher € and finitely many other
block ciphers with the goal that for this choice of £3 we can compute
the set Q. For example one could define

Ex ={etU{e: e € En and e has same key length as e}.

Again, if the set Q has cardinality 1, i.e., if gz = qe, then the given
probabilistic algorithm U for extracting a feature from a sequence of
invertible functions with the given parameter M cannot be used to
construct a probabilistic algorithm that is distinguishing for the block
cipher €. If the set Q has cardinality 2 then we compute the threshold
T and the sequence length M, according to the results of Chapter 2, for
which the statistical testing of the block cipher € shown in Figure 4.4
shows either that qz = qg or that q: # gs. To show this we have to
run the test. If the set Q has cardinality larger than 2 or if the set Q is
unknown then we run the test shown in Figure 4.4 for the actual block
cipher e.

In (2.52) we determined the set of probability vectors Q;, that con-
tains all probability vectors q which our statistical test will detect with
error probability at most 8* to be different from the ideal source prob-
ability vector p. Based on this we determine the set of block ciphers
&N .1, that contains all block ciphers e which our statistical test will de-
tect with error probability at most 3* to be different from the complete
block cipher ¢, i.e.,

Evi1={e:e€ &y and q. € Q1 }. (4.19)

4.3 Block Ciphers to be Tested

In the previous section we showed how a block cipher can be analyzed.
In this section we show which block ciphers can be derived from a given
block cipher. All the derived block ciphers can then be analyzed by the
method described in the previous section.
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Definition 4.2 The block cipher e with block length N and key space
Z, and the block cipher e+ with block length N and key space Z,. = Z,
are duals if the encryption function et of the block cipher et is identical
to the decryption function e; ! of the block cipher e for every secret key
z in the key space Z,.

Under what condition does it make sense to analyze both the given
block cipher e and its dual cipher e* by the approach described in the
previous section? As shown in Figure 4.4, the final result of a test is the
binary decision D. For a given probabilistic algorithm U for extracting a
feature from a sequence of invertible functions and for given parameters
M, M and T, the probability distribution of the random variable D
depends only on the analyzed block cipher. Therefore, if one is not able
to show for the given probabilistic algorithm U for extracting a feature
from a sequence of invertible functions and for the given parameters M,
M and T that

P[D =0|E]=P[D =0|E..], (4.20)

i.e., if one cannot show that the probability distribution of the random
variable D is the same whether the given block cipher e or its dual
cipher et is analyzed, a reasonable strategy is to analyze both block
ciphers. In this case, it is wiser to give simulation results as plots of
the statistics Sy instead of as plots of the binary decisions D because
the former plots reveal more information. Therefore, if one is not able
to show for the given probabilistic algorithm U for extracting a feature
from a sequence of invertible functions and for the given parameters M
and M that

P[Su <7|E]=P[Sy < 7|E.1] forall 7, (4.21)

i.e., if one cannot show that the probability distribution function of
the random variable S)s is the same whether the given block cipher e
or its dual cipher e' is analyzed, a reasonable strategy is to analyze
both block ciphers. This is the strategy that we will follow in the next
chapter.

Omne could try to verify (4.21) for the given block cipher e only, or
one could try to prove that this block cipher belongs to a family of
block ciphers for which one can prove that every member of this family
of block ciphers satisfies (4.21). For example, every block cipher that
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is its own dual satisfies (4.21). (Note that all self-dual block ciphers
can be broken since a ciphertext block can be decrypted by encrypting
it a second time.) But as long as this family of block ciphers does
not contain the set of all block ciphers with the same block length as
the given block cipher, both approaches require that one analyze the
internal structure of the given block cipher, which is the main thing we
try to avoid in statistical testing of block ciphers. Therefore we prefer
to try to show, for a given probabilistic algorithm U for extracting a
feature from a sequence of G invertible functions in F§ and for given
parameters M and M, that (4.21) holds not only for the given block
cipher with block length N but also for all block ciphers with block
length N.

Definition 4.3 For a given probabilistic algorithm U for extracting a
feature from a sequence of G invertible functions in F$ and for given
parameters M and M, the test shown in Figure 4.4 is undirected if

PlSu <7|E.] =P [Sy < 7|E 1] for all 7 and for alle € Ey, (4.22)

i.e., if, for all block ciphers e with block length N, the probability distrib-
ution function of the statistic Sar is the same whether the block cipher e
or its dual cipher e* is analyzed. Otherwise the test shown in Figure 4./
is directed.

Definition 4.3 moves the burden of proving that a test is undirected
from the user of a test to the designer of a test. The simplified recom-
mendation to the user of a test is then to analyze both block ciphers,
the given block cipher e and its dual cipher e, by a test that need not
be undirected and to analyze only one of these two block ciphers by a
test that is certified to be undirected.

In order to show that a test is undirected, the designer of the test
may investigate the probabilistic algorithm U for extracting a feature
from a sequence of invertible functions that he used inside his test.

Definition 4.4 A probabilistic algorithm U for extracting a feature
from a sequence of G invertible functions f = [f[1], f[2],..., fIG]] in
F§ is undirected if the probability distribution for the extracted feature
U is the same whether conditioned on F = f or conditioned on F = £~ 1,
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where £ = [f[170, f2°, ... SIG) ], e, if

Pyp(lf) = PU\F(~|f_1) for all £ in F§. (4.23)

Otherwise the probabilistic algorithm U for extracting a feature from a
sequence of invertible functions is directed.

Any undirected probabilistic algorithm U for extracting a feature from
a sequence of invertible functions embedded in the model shown in Fig-
ure 4.4 will result in an undirected test. However, a directed probabilis-
tic algorithm U for extracting a feature from a sequence of invertible
functions embedded in the model shown in Figure 4.4 may result in ei-
ther a directed test or an undirected test. In the next chapter we give an
example of a directed probabilistic algorithm U for extracting a feature
from a sequence of invertible functions that results in an undirected test
(Figure 5.31).

We have treated the basic problem of finding a computationally fea-
sible probabilistic algorithm for analyzing an invertible function that is
distinguishing for a given block cipher e. We now consider the other
basic problem of finding both a decomposition {Z.1,Z.2,...,Z..} of
the key space Z, of a given block cipher e and a computationally fea-
sible probabilistic algorithm for analyzing an invertible function that
is key-subset distinguishing for this block cipher and for this decom-
position of the key space. Assume first that we have a decomposition
{Za,2.2,...,2,0} of the key space Z, and that we want to find a com-
putationally feasible probabilistic algorithm for analyzing an invertible
function that is key-subset distinguishing for the given block cipher e
and for this decomposition of the key space.

Definition 4.5 A block cipher e* with block length N and key space
Ze« 1s o reduced-key-space version of a block cipher e with block length
N and key space Z. if the key space Zq« is a subset of the key space Z,
and if the encryption function e is identical to the encryption function
e, for every secret key z in the key space Ze«.

Since the key spaces Z.1, Z.2, ..., Z.r in the assumed decomposition
are all subsets of the key space Z., we can according to Definition 4.5
obtain L reduced-key-space versions of the given block cipher e, namely
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the block cipher e! with key space Z.1, the block cipher e? with key
space Z.2, ... and the block cipher e with key space Z,z.

In order to find a probabilistic algorithm for analyzing an invertible
function that is key-subset distinguishing for the given block cipher
e and for the given decomposition of the key space, we have to find a
probabilistic algorithm for analyzing an invertible function that behaves
differently for at least two of the L reduced-key-space versions of the
given block cipher e, say for the block ciphers e* and e/, when applied to
a randomly chosen encryption function of the block cipher e as opposed
to when applied to a randomly chosen encryption function of the block
cipher €.

In the previous section we solved a similar problem. There we had to
find a probabilistic algorithm for analyzing an invertible function that
behaves differently when applied to a randomly chosen encryption func-
tion of a given block cipher e as opposed to when applied to a randomly
chosen encryption function of the complete block cipher é. The solution
there was to design probabilistic algorithms U for extracting a feature
from an invertible function and then to test which of them can be used
to build a probabilistic algorithm that behaves differently when applied
to a randomly chosen encryption function of the given block cipher e as
opposed to when applied to a randomly chosen encryption function of
the complete block cipher €. But there we had the advantage that we
could compute the exact behavior of the probabilistic algorithm U for
extracting a feature from an invertible function when applied to a ran-
domly chosen encryption function of the complete block cipher € in the
sense that we could test the behavior of the probabilistic algorithm U for
extracting a feature from an invertible function when applied to a ran-
domly chosen encryption function of the given block cipher e against
the known behavior of the probabilistic algorithm U for extracting a
feature from an invertible function when applied to a randomly chosen
encryption function of the complete block cipher é. This advantage we
do not have here. In principle we have to test the behaviors of the proba-
bilistic algorithm U for extracting a feature from an invertible function
when applied to a randomly chosen encryption function against each
other for all L reduced-key-space versions of the given block cipher e.
Fortunately, this is not needed. It is sufficient to test individually the
behaviors of the probabilistic algorithm U for extracting a feature from
an invertible function when applied to a randomly chosen encryption
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function for each of the L reduced-key-space versions of the given block
cipher e against the known behavior of the probabilistic algorithm U
for extracting a feature from an invertible function when applied to a
randomly chosen encryption function of the complete block cipher é.
To show that this individual testing is sufficient, we distinguish three
cases:

e If the L behaviors of the probabilistic algorithm U for extracting
a feature from an invertible function when applied to a randomly
chosen encryption function of each of the L reduced-key-space ver-
sions of the given block cipher e are not all identical, then some
of these L behaviors must be different from the known behavior
of the probabilistic algorithm U for extracting a feature from an
invertible function when applied to a randomly chosen encryption
function of the complete block cipher €. If this difference in be-
havior is significant, then we can use this probabilistic algorithm
U for extracting a feature from an invertible function to build a
computationally feasible probabilistic algorithm for analyzing an
invertible function that is key-subset distinguishing for the given
block cipher e and for the given decomposition of the key space.

o If the L behaviors of the probabilistic algorithm U for extracting
a feature from an invertible function when applied to a randomly
chosen encryption function of each of the L reduced-key-space ver-
sions of the given block cipher e are all identical but are different
from the known behavior of the probabilistic algorithm U for ex-
tracting a feature from an invertible function when applied to a
randomly chosen encryption function of the complete block cipher
¢, then this probabilistic algorithm U for extracting a feature from
an invertible function cannot be used to build a computationally
feasible probabilistic algorithm for analyzing an invertible function
that is key-subset distinguishing for the given block cipher e and
for the given decomposition of the key space. However, if this dif-
ference in behavior is significant, then we can use this probabilistic
algorithm U for extracting a feature from an invertible function
to build a computationally feasible probabilistic algorithm for an-
alyzing an invertible function that is distinguishing for the given
block cipher e.

o If the L + 1 behaviors of the probabilistic algorithm U for ex-
tracting a feature from an invertible function when applied to a
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randomly chosen encryption function of each of the L reduced-key-
space versions of the given block cipher e and to a randomly chosen
encryption function of the complete block cipher € are all identical,
then this probabilistic algorithm U for extracting a feature from
an invertible function cannot be used to build a computationally
feasible probabilistic algorithm for analyzing an invertible func-
tion that is key-subset distinguishing for the given block cipher
e and for the given decomposition of the key space nor can it be
used to build a computationally feasible probabilistic algorithm
for analyzing an invertible function that is distinguishing for the
given block cipher e.

Therefore, instead of looking directly for a probabilistic algorithm for
analyzing an invertible function that is key-subset distinguishing for the
given block cipher e and for the given decomposition { Z.1, Z.2,... , Z.c }
of the key space Z,, it is preferable to look for a probabilistic algorithm
for analyzing an invertible function that is distinguishing for some of
the L reduced-key-space versions of the given block cipher e, i.e., for

some of the block ciphers e', €2, ..., e’. The block ciphers e!, €2, ...,

el are all derived from the given block cipher e and they can all be

analyzed by the method described in the previous section.

Two independent tasks remain to be done, namely the designing
of decompositions of key spaces and the designing of probabilistic al-
gorithms U for extracting a feature from a sequence of G invertible
functions in }'f,. In the next chapter, we give examples of how to do
both tasks.

Chapter 5

Bit-Dependency Tests for
Block Ciphers

What can we say about the quality of a block cipher when we look only
at a given subset of bits of the plaintext blocks and a given subset of bits
of the ciphertext blocks? In this chapter we seek to answer this question
as completely as possible. We start with the simplest case, develop a
test for it, analyze the properties of this test and generalize it. As a
result we obtain a family of tests that we call the bit-dependency tests.

61
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5.1 Definition

The simplest bit-dependency tests are those where we look at only one
bit of the plaintext block and only one bit of the ciphertext block. For
such tests, we first consider the behavior of the encryption function in
the forward direction only. We now explain how such tests are per-
formed and analyzed.

= [0l

r— - - - - - — — - = _i_ ______________ A

[ X Y, [
R ) ! 1 Data [

'[0,1] Xi—1 Invertible Yi-1 | !

: T; Function Yi |

| X UG Vi

! = DB

| :

| XN Yy

Figure 5.1: Feature extracting algorithm for the directed bit-depen-
dency test of i-th input bit and k-th output bit.

First we select the input bit and the output bit to consider. Since
there are IV input bits and IV output bits, there are N2 possible combina-
tions, and hence N? such single-bit tests. In the example of Figure 5.1,
we have chosen the ¢-th input bit and the k-th output bit as the ones
to consider in the test to be performed and analyzed.

The invertible function f = [f[1]] and the random string R are the
inputs to the feature extracting algorithm in Figure 5.1 and the random
variable U is the output. The invertible function f = [f[1]] takes values
in the set F},. The random string R takes values in the set R of vectors
with N — 1 binary components according to the uniform probability
distribution Pg(r) = 2. The values of these two inputs determine
the value of the random variable U in the following way:

For given values of the invertible function f = [f[1]] and the random
string R, we first set the value of the i-th input bit to a 0 and observe
the value of the k-th output bit. Then we set the value of the i-th input
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bit to a 1 and again observe the value of the k-th output bit. There are
four possible pairs that we can observe, namely [0, 0], [0,1], [1,0] and
[1,1]. These four possible values are then reduced to the three values
i1, flz and fig by mapping both [0,0] and [1,1] to the same value, for
reasons that will be explained in the next section. This mapping gives
the random variable U.

Note that U is a deterministic function of f and R. All the random-
ness involved in studying the behavior of an invertible function f = [f[1]]
resides in the random string R. We assume that f[1] is easy to compute
(as will be the case when f[1] is the encryption function of a practical
block cipher for some choice of the secret key) and hence it is easy to
compute U from f and R. Nevertheless, for practical values of N, say
N =64 or N = 128, it is computationally infeasible for a given invert-
ible function f = [f[1]] to compute U for all 2= possible values of R.
We are forced to settle for computing U for only a small fraction of all
possible values of R.

5.2 Analysis

The random string R in Figure 5.1 can take 2V~! different values. For
a given invertible function £ = [f[1]] and for a given random string R
we observe a sequence @’ that is either [0,0], [0,1], [1,0] or [1,1]. If
we go over all 2V ! random strings R we will observe for example k;
sequences [0, 0], k2 sequences [0, 1], k3 sequences [1,0] and k4 sequences
[1,1]. Since the function f = [f[1]] is invertible the total number of 0’s
and the total number of 1’s in all 2! observed sequences @' will be
the same, i.e., k1 is equal to k4 for all invertible functions £ = [f[1]] in
F). Because the random string R is chosen uniformly at random we
have

P p([0,0][f) = P, p([L, 1]I£) (5.1)

for all invertible functions f in F\. We make use of this a priori knowl-
edge by not distinguishing between an observed sequence [0, 0] and an
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observed sequence [1,1].

. 1
Q= {2N 712k, ko, k3]t ki, ko, ks € R and 2ky + ke + k3 = 2N1} ,
(5.2)
1 gN-113
Py g, (2N 1[2k1,k2,k3]) = PNCTRPRER (5.3)

The conditional probability distribution Py, of the random variable
U in the testing model in Figure 4.4 is obtained by inserting (5.3) in
(4.14), directly computing the sum and applying (4.15). The results
for M =1, M =2, and M = 3 are shown in Table 5.1, Table 5.2 and
Table 5.3, respectlvely.

We will write Ax to denote the set of all affine invertible functions
{0, 1}N — {0, 1}N, ie., Ay ={f: f € Fn and there exists a matrix A
and a vector b such that f(x) = x-A + b for all x € {0,1}"}. There
are |Ay| =2V HN 12N — 2%) functions in Ay.

Definition 5.1 The affine block cipher with block length N is the block
cipher

e:{0, 13N x Z: = {0, 1} : (2, 2) = é.(x), (5.4)

where for each affine invertible function f in An there exists exactly
one secret key z in Zz such that €, = f.

The affine block cipher é with block length N can easily be broken. After
encrypting N linearly independent plaintext blocks and one additional
plaintext block, that is a linear combination of the previous IV plaintext
blocks, one can solve the obtained N + 1 linear equations and easily
compute the matrix A and the vector b for which é,(x) = x- A+ b,
where z is the actual secret key.

For the underlying random experiment described on page 49 and for
the affine block cipher é, (4.2) reduces to

\Al—N\ if fe Ay

0 if ¢ An. (5:5)

PF|Eé~(f)={
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5~ ey £a=[L0,00ora=[0,3,3]
PQlEé (@) = 2(21\}71) if @ =[0,1,0] or q =[0,0,1] (5.6)
0 else.

The conditional probability distribution Py g, of the random variable
U in the testing model in Figure 4.4 is obtained by inserting (5.6) in
(4.14), directly computing the sum and applying (4.15). The results
for M =1, M =2, and M = 3 are shown in Table 5.1, Table 5.2 and
Table 5.3, respectlvely.

L 8 Jul Pyp(w) | Pyp(w) |
[1,0,0] | %_ 4(21\?_1) % 4(21\2 i)
[0,1,0] | po %"‘4(21371) i 4(2N )
0,0.1) | ps | £+ gt | 4+ 2o

Table 5.1: Probability distribution of the random wvariable U while an-
alyzing the complete block cipher € and the affine block cipher €, respec-
tively, by the directed bit-dependency test for 1 input bit and 1 output
bit by performing M = 1 ezecutions of the body of the inner loop per
trial.

| o | u Py|g, (u) | Pyjp.(u) |
[ 0, ] H1 % + 16(21\77{1)(21\773) % o 8(213—1)
[ 1 ] u2 1 ( ]8\7.2N)7(2197 ) 0
y Ly 4 16(2N —-1)(2NV -3
oN _«
[1,0,1] | ps | §— m 0
[0,2,0] | pa 11_6 + 16(2N.7%)(2N73) % + 8(21571)
[0,1,1] | ps f + 6Y -1 (2N =3) f - 8(21\;—1)
[0,0,2] | pe || 15+ ey e —3 | 8 T sEF 1

Table 5.2: Probability distribution of the random wvariable U while an-
alyzing the complete block cipher € and the affine block cipher €, respec-
tively, by the directed bit-dependency test for 1 input bit and 1 output
bit by performing M = 2 ezecutions of the body of the inner loop per
trial.

Note that the probability distributions Py, (.) and Py g, (.) shown
in Table 5.1 are identical. Therefore, the directed bit-dependency test
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L 8 [ u | Pos, (u) | Pyp.(w) |
BO.0 [ i || b+ BEe A | Lo

2100 | o | - B 0
2.0 | | - SBrASESES | o
120 | o | &+ e et |
11,1 | s | b cusag | o
1,02 | o | &+ SiemsRem g |
[0:3,0] | w7 | 5 %ﬁi@v(z%%&;v 1t | 15w
[0,2,1] | ps | &+ BEmiedntiStr st | & - by
[0,1,2] | po | &+ 2Zeoir sz s | o g
0,0,3] | mo || &1 + ¥yt | 15 T woven

Table 5.3: Probability distribution of the random variable U while an-
alyzing the complete block cipher € and the affine block cipher €, respec-
tively, by the directed bit-dependency test for 1 input bit and 1 output
bit by performing M = 3 ezecutions of the body of the inner loop per
trial.
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for one input bit and one output bit with parameter M = 1 behaves
the same when analyzing the affine block cipher € as when analyzing
the complete block cipher é.

To demonstrate that there exist block ciphers e for which the di-
rected bit-dependency test for one input bit and one output bit with pa-
rameter M = 1 behaves differently when analyzing the block cipher e as
opposed to when analyzing the complete block cipher €, we now describe
a family of block ciphers e for which Py|g, (13) # Py g, (p#s)- Using (4.1)
gives J = (3"%_1) = 3, using Table 4.1 and (4.15) gives Py|g, (13) =
PNlEe([O,O,l]), and using (4.14) gives Py g, (ns) = ZQEQ quQ‘E (@)-
According to (5.2), every probability vector q in Q has the property
that the value of its last component s is a rational number kz/2V 1
where k3 is some nonnegative integer smaller than or equal to 2V 1. It
follows that

P (i) = Y gets Y Pays, (@) (5.7

k?g ik
P, = 2 5.8
U\Ee(l%) Z oN-1|Z,]’ (5.8)
k3=0
where the constants ig, ¢1, ..., iov—1 are nonnegative integers. Using
Table 5.1 gives
2N—2

Py E. = —. 5.9
U|Es (13) oN _ 1 (5.9)

Multiplying (5.8) and (5.9) by 2V 71| Z,|(2" — 1) gives

N-1 N _ (9N -
Py, (13)2Y 22V 1) = @Y = 1) Y ki, (5.10)

k3=0

and

Pyip, ()2 2|2V = 1) = 2227 7. (5.11)
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For |Z.| = 2% where K is a nonnegative integer and for N > 2, the
prime factorization of the right side of (5.10) contains at least one odd
prime while the prime factorization of the right side of (5.11) contains
no odd prime. Hence Py g, (us) # Py|g,(us). Therefore, for any block
cipher e with block length V > 2 and with a key space of cardinality
|Z.] = 2% where K is a nonnegative integer, the directed bit-depen-
dency test for one input bit and one output bit with parameter M = 1
behaves differently when analyzing the block cipher e as opposed to
when analyzing the complete block cipher é. Note that virtually all con-
temporary block ciphers as well as all of the block ciphers we analyzed
are of this type. For any block cipher of this type and for any combi-
nation of a single input bit and a single output bit, there exists a large
enough number of trials M for which the directed bit-dependency test
for one input bit and one output bit with parameter M = 1 can detect
this difference in behavior. However, for some block ciphers of this type
and some combinations of a single input bit and a single output bit,
the required number of trials M to detect this difference in behavior
can be so large that the resulting directed bit-dependency test for one
input bit and one output bit with parameter M = 1 is computationally
infeasible.

5.3 Simulation Results, Part 1

In this section we show the simulations results we obtained by analyzing
different block ciphers by the directed bit-dependency test for 1 input
bit and 1 output bit with parameter M = 1.

T —>* gzn(a) ™ g(a) ™ g(a) " g(a) _’gout(w') — Y

P:Elai?_ T Zin Tzl TZQ Tzn Tzout Cipher-
ex
Block Key Schedule E;Efc})(ctk

T

z Secret Key

Figure 5.2: Structure of an n-round iterated block cipher with bivariate
round function g.
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All of the block ciphers we analyzed are iterated block ciphers which
have a structure as shown in Figure 5.2. In an iterated block cipher a
simple bivariate function g is iterated several times. Each iteration is
called a round. The simple bivariate function g takes a vector with N
binary components and a subkey as the inputs and outputs a vector
with NV binary components. The subkeys are derived from the secret
key by a key schedule algorithm. Some of the analyzed block ciphers
have an additional simple bivariate function g;, at the input and/or an
additional simple bivariate function g,,: at the output. The number
of rounds is part of the definition of an iterated block cipher. What
we analyzed are reduced versions of iterated block ciphers obtained by
reducing the number of rounds.
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Figure 5.3: The block cipher DES reduced to 6 rounds analyzed
by the directed bit-dependency test for 1 input bit and 1 output bit by
performing M = 228 trials and M = 1 ezecution of the body of the inner
loop per trial.

The block cipher DES (Data Encryption Standard) is a 16-round
iterated block cipher with block length N = 64 and key length K =
56 developed by IBM and taken in 1977 by the National Bureau of
Standards [26].

Figure 5.3 shows the simulation results obtained by analyzing the
block cipher DES reduced to 6 rounds by the directed bit-dependency
test for one input bit and one output bit by performing M = 22° trials
and M = 1 executions of the body of the inner loop per trial. Since there
are N2 possible combinations of a single input bit and a single output
bit we did run 642 = 4096 different random experiments. The left plot
in Figure 5.3 shows on the abscissa these different random experiments
numbered form 1 to 4096 and on the ordinate the obtained statistic Sas
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for each of these different random experiments. Any statistic Sjs that
was larger than or equal to 94 is shown on the level labeled “> 94”.
Note that we show the statistic Sps instead of the decision D. We do
so in order to obtain more information from our simulations.

As can be seen from Figure 5.1 the feature extracting algorithm of
the directed bit-dependency test for one input bit and one output bit
has .J = 3 different output values. Together with (4.1) and with M = 1
we get J = (**]7!) = 3 as the length of the ideal source probability
vector. The ideal source probability vector is shown in Table 5.1 in the
column labeled with Py g, (u).

We accept a probability of type I error & = 107 1%, From Table 2.3 we
get P [x%_; <46.05] =1 —107'" and obtain the threshold T' = 46.05.
In the left plot in Figure 5.3 we have chosen the scale of the ordinate such
that the chosen threshold T is in the middle of the plot. Any point in the
left plot that has an Sy, > 46.05 identifies an input-bit/output-bit pair
for which we are (1 — «a)-certain that it behaves non-ideally according
to the directed bit-dependency test.

The right plot in Figure 5.3 shows the histogram for the 4096 sta-
tistics Sps. The histogram shows on its abscissa the number of statis-
tics Sys in the range shown on its ordinate. The number of statistics
Sy > 10 is added to the bar just below the label “> 10”. The solid line
in the left plot shows the ideal distribution that we would observe if the
complete block cipher would be tested.

The simulation results shown in Figure 5.3 were obtained by per-
forming M = 226 trials and M = 1 executions of the body of the inner
loop per trial. Since for each executions of the body of the inner loop
one has to encrypt two plaintext blocks, we had for each point in the
left plot of Figure 5.3 to encrypt 1 gigabyte of plaintext. For all 4096
points we had to encrypt a total of 4 terabyte of plaintext. This would
have required 110 days of computation time if we had used a single one
of the available computers. By using several computers in parallel, we
obtained the simulation results shown in Figure 5.3 within 10 days.

All the simulation results shown in the remainder of this section were
obtained by the directed bit-dependency test for one input bit and one
output bit by performing M = 22! trials and M = 1 execution of the
body of the inner loop per trial.
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To show how many rounds of encryption are required before the
directed bit-dependency test for one input bit and one output bit with
parameters M = 1 and M = 22! fails to detect a difference between the
tested block cipher and the complete block cipher, we show on each page
the simulation results for two block ciphers. For example, Figure 5.4
shows the simulation results for the block cipher DES reduced to 5
rounds where some of the statistics Sj; are larger than the threshold
T'. Increasing the number of rounds by one gives the block cipher DES
reduced to 6 rounds. Figure 5.5 shows the simulation results for the
block cipher DES reduced to 6 rounds where none of the statistics Sys
are larger than the threshold T'. Therefore, 6 rounds of encryption are
required before the directed bit-dependency test for one input bit and
one output bit with parameters M = 1 and M = 22! fails to detect a
difference between a reduced version of the block cipher DES and the
complete block cipher.

Since the directed bit-dependency test for one input bit and one
output bit with parameter M = 1 is a directed test, we run this test not
only for a block cipher e but also for its dual cipher e. For example,
Figure 5.6 shows the simulation results for the dual of the block cipher
DES reduced to 5 rounds and Figure 5.7 shows the simulation results
for the dual of the block cipher DES reduced to 6 rounds.

Since, in the ideal case, the expected number of statistics Sy in
the range 9 < Sp; < 10 is 4096 - P[9 < Spr and Sy < 10|E;] = 17.9
and the expected number of statistics Sy, larger than or equal to 9 is
4096 - P[9 < Syr|Ez] = 45.5, and since the top bar in the histogram
indicates not the number of statistics Sy in the range 9 < Sy < 10 but
the number of statistics Sys larger than or equal to 9, in the ideal case
it is expected that the top bar in the histogram reaches a little above
the solid line of the ideal distribution. However, Figure 5.5 shows 86
statistics Sas larger than or equal to 9, which is nearly twice as many as
expected in the ideal case. Also the left plot in Figure 5.5 shows some
random experiments with rather large statistics Sys. This indicates that
there may be non-ideal behaviors just on the verge of being detected.
What one does in such a situation is to increase the number of trials M
and check whether there are now non-ideal behaviors. Figure 5.3 shows
that analyzing the same
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Figure 5.4: The block cipher DES reduced to 5 rounds analyzed
by the directed bit-dependency test for 1 input bit and 1 output bil by
performing M = 22! trials and M = 1 ezecution of the body of the inner

loop per trial.
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Figure 5.5: The block cipher DES reduced to 6 rounds analyzed
by the directed bil-dependency lest for 1 input bil and 1 oulput bil by
performing M = 22 trials and M = 1 execution of the body of the inner

loop per trial.

block cipher as for Figure 5.5 by the directed bit-dependency test for
one input bit and one output bit with parameters M =1 and M = 226
did indeed detect non-ideal behaviors.

Figures 5.6 and 5.7 show essentially the same behaviors as Figures
5.4 and 5.5. Therefore, analyzing the block cipher DES reduced to 5
rounds and to 6 rounds, respectively, by the directed bit-dependency
test for one input bit and one output bit with parameters M = 1 and
M = 22! and analyzing the dual ciphers by this same test gave no
essential difference in the detection of non-ideal behaviors.

5.3. Simulation Results, Part I 73

> > 10 ]
S S

9] 9}

ke 8 OF 1
5 =

e 2 Y 2500

Random Experiment f Rand. Exp.

Figure 5.6: The dual of the block cipher DES reduced to 5 rounds
analyzed by the directed bit-dependency test for 1 input bit and 1 outpul
bit by performing M = 22! trials and M = 1 execution of the body of

the inner loop per trial.
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Figure 5.7: The dual of the block cipher DES reduced to 6 rounds
analyzed by the directed bil-dependency test for 1 input bit and 1 output
bit by performing M = 22! trials and M = 1 execution of the body of

the inner loop per trial.
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Figure 5.8: The block cipher RC2 reduced to 5 rounds analyzed

by the directed bit-dependency test for 1 input bit and 1 output bil by
performing M = 221 trials and M = 1 ezecution of the body of the inner

loop per trial.
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Figure 5.9: The block cipher RC2 reduced to 6 rounds analyzed
by the directed bil-dependency lest for 1 input bil and 1 oulput bil by
performing M = 22 trials and M = 1 execution of the body of the inner

loop per trial.

The block cipher RC2 is a 16-round iterated block cipher with block
length N = 64 and variable key length developed by Ronald L. Rivest
[32] in 1989. We used RC2 with a key length K = 128. The structure
of RC2 is not exactly as shown in Figure 5.2 since there is just before
the 6-th round and just before the 12-th round and additional simple

bivariate function g’.

The histogram in Figure 5.9 shows the remarkable accuracy of the
chi-squared approximation to the distribution at the point where differ-

ences cannot be detected.
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Figure 5.10: The dual of the block cipher RC2 reduced to 6 rounds

analyzed by the directed bit-dependency test for 1 input bit and 1 output
bit by performing M = 22! trials and M = 1 execution of the body of

the inner loop per trial.
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Figure 5.11: The dual of the block cipher RC2 reduced to 7 rounds
analyzed by the directed bil-dependency test for 1 input bit and 1 output
bit by performing M = 22! trials and M = 1 execution of the body of

the inner loop per trial.

The block cipher RC2 reduced to 6 rounds is an example of a block
cipher that behaves according to the directed bit-dependency test for
one input bit and one output bit with parameters M = 1 and M = 22!
(Figure 5.9) significantly better than its dual cipher (Figure 5.10).

In Figure 5.11 one sees one random experiment, with a surprisingly
large statistic Sps. To check this random experiment, we repeated it
with a much larger number of trials M. The result was an ideal behavior.
It must be remembered that all these tests are statistical and anomalies
like the single large statistic Sy in Figure 5.11 can be observed even if
all random experiments should exhibit an ideal behavior.
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Figure 5.12: The block cipher RC5-32/12/16 reduced to 4 rounds
analyzed by the directed bit-dependency test for 1 input bit and 1 output
bit by performing M = 22" trials and M = 1 execution of the body of

the inner loop per trial.
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Figure 5.13: The block cipher RC5-32/12/16 reduced to 5 rounds
analyzed by the directed bil-dependency test for 1 input bit and 1 output
bit by performing M = 22! trials and M = 1 execution of the body of

the inner loop per trial.

The block cipher RC5-32/12/16 is a 12-round iterated block cipher
with block length N = 64 and key length K = 128 developed by Ronald

L. Rivest [31] in 1994.

Even if the left plot in Figure 5.13 does not look much different from
plots showing an ideal behavior, the histogram in Figure 5.13 shows that
statistics Sps larger than 3 occur a little more frequently than expected
in the ideal case and statistics Sj; smaller than 2 occur a little less
frequently than expected in the ideal case. This indicates that there
may be non-ideal behaviors just on the verge of being detected. By
increasing the number of trials to M = 226 we could show that there

are indeed non-ideal behaviors.
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Figure 5.14: The dual of the block cipher RC5-32/12/16 reduced to
5 rounds analyzed by the directed bit-dependency test for 1 input bit
and 1 output bit by performing M = 22! trials and M = 1 execution of

the body of the inner loop per trial.
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Figure 5.15: The dual of the block cipher RC5-32/12/16 reduced to
6 rounds analyzed by the directed bil-dependency test for 1 input bit
and 1 output bit by performing M = 22! trials and M = 1 execution of

the body of the inner loop per trial.

The block cipher RC5-32/12/16 reduced to 5 rounds is another ex-
ample of a block cipher that behaves according to the directed bit-depen-
dency test for one input bit and one output bit with parameters A = 1
and M = 22! (Figure 5.13) significantly better than its dual cipher

(Figure 5.14).
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Figure 5.16: The block cipher IDEA reduced to 0 round analyzed
by the directed bit-dependency test for 1 input bit and 1 output bit by
performing M = 22! trials and M = 1 ezecution of the body of the inner

loop per trial.
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Figure 5.17: The block cipher IDEA reduced to 1 round analyzed
by the directed bit-dependency lest for 1 input bil and 1 oulput bil by
performing M = 22 trials and M = 1 execution of the body of the inner

loop per trial.

The block cipher IDEA (International Data Encryption Algorithm)
is a 8-round iterated block cipher with block length N = 64 and key
length K = 128 developed by Xuejia Lai and James L. Massey [16, 17,

15] in 1990.

The simulation results obtained by analyzing the reduced versions of
the block cipher IDEA by the directed bit-dependency test for one input
bit and one output bit with parameter M = 1 are quite surprising. The
block cipher IDEA reduced to a single round exhibited ideal behavior
when analyzed by the directed bit-dependency test for one input bit
and one output bit with parameters M = 1 and M = 2>' (Figure 5.17).
Moreover, analyzing its dual cipher (Figure 5.19) and increasing the
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Figure 5.18: The dual of the block cipher IDEA reduced to 0 round
analyzed by the directed bit-dependency test for 1 input bit and 1 outpul
bit by performing M = 22" trials and M = 1 execution of the body of

the inner loop per trial.
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Figure 5.19: The dual of the block cipher IDEA reduced to 1 round
analyzed by the directed bil-dependency test for 1 input bit and 1 output
bit by performing M = 22! trials and M = 1 execution of the body of

the inner loop per trial.

number of trials to M = 22 gave simulation results similar to those
shown in Figure 5.17. However, since the block cipher IDEA reduced to
1 round has a key space of cardinality 2'2® and a block length N > 2,
we can use the result given on page 68 to conclude that the directed
bit-dependency test for one input bit and one output bit with parame-
ter M = 1 behaves differently when analyzing the block cipher IDEA
reduced to 1 round as opposed to when analyzing the complete block
cipher. Obviously, this difference in behavior is remarkably small for

IDEA reduced to 1 round.
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Figure 5.20: The block cipher SAFER SK-128 reduced to 2 rounds

analyzed by the directed bit-dependency test for 1 input bit and 1 output
bit by performing M = 22! trials and M = 1 execution of the body of

the inner loop per trial.
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Figure 5.21: The block cipher SAFER SK-128 reduced to 3 rounds
analyzed by the directed bil-dependency test for 1 input bit and 1 output
bit by performing M = 22! trials and M = 1 execution of the body of

the inner loop per trial.

The block cipher SAFER SK-128 (Secure And Fast Encryption Rou-
tine) is a 10-round iterated block cipher with block length N = 64 and
key length K = 128 developed by James L. Massey [20, 21, 12, 22] in

1993.

Figure 5.20 and Figure 5.22 show a slight difference in behavior
depending on whether the block cipher SAFER SK-128 reduced to 2
rounds or its dual cipher is analyzed by the directed bit-dependency test
for one input bit and one output bit with parameters M = 1 and M =
221, Figure 5.20 shows more statistics Sy; > 94 than does Figure 5.22.
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Figure 5.22: The dual of the block cipher SAFER SK-128 reduced
to 2 rounds analyzed by the directed bit-dependency test for 1 input bit
and 1 output bit by performing M = 22! trials and M = 1 execution of

the body of the inner loop per trial.
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Figure 5.23: The dual of the block cipher SAFER SK-128 reduced
to 3 rounds analyzed by the directed bit-dependency test for 1 input bit
and 1 output bit by performing M = 22! trials and M = 1 execution of

the body of the inner loop per trial.

For both the block cipher SAFER SK-128 reduced to 2 rounds and
its dual cipher, all the input-bit/output-bit combinations that resulted
in a non-ideal behavior when analyzed by the directed bit-dependency
test for one input bit and one output bit with parameters M =1 and
M = 22! are combinations of a least significant bit of a byte in the input

with a least significant bit of a byte in the output.
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Figure 5.24: The block cipher SAFER+256 reduced to 2 rounds
analyzed by the directed bit-dependency test for 1 input bit and 1 outpul
bit by performing M = 22" trials and M = 1 execution of the body of

the inner loop per trial.
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Figure 5.25: The block cipher SAFER+256 reduced to 3 rounds
analyzed by the directed bil-dependency test for 1 input bit and 1 output
bit by performing M = 221 trials and M = 1 execution of the body of

the inner loop per trial.

The block cipher SAFER+256 (Secure And Fast Encryption Routine
Plus) is a 16-round iterated block cipher with block length N = 128
and key length K = 256 developed by James L. Massey, Gurgen H.
Khachatrian and Melsik K. Kuregian [24] in 1998.

Since the block cipher SAFER4-256 has a block length N = 128,
there are 128 - 128 = 16384 possible combinations of a single input bit
and a single output bit and hence there are 16384 random experiments

shown in Figures 5.24, 5.25, 5.26 and 5.27.
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Figure 5.26: The dual of the block cipher SAFER+256 reduced to 2
rounds analyzed by the directed bit-dependency test for 1 input bit and
1 output bit by performing M = 22! trials and M = 1 ezecution of the

body of the inner loop per trial.
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Figure 5.27: The dual of the block cipher SAFER+256 reduced to 3
rounds analyzed by the directed bit-dependency test for 1 input bit and
1 output bit by performing M = 22! trigls and M = 1 ezecution of the

body of the inner loop per trial.

Figure 5.24 and Figure 5.26 show a slight difference in behavior de-
pending on whether the block cipher SAFER+256 reduced to 2 rounds
or its dual cipher is analyzed by the directed bit-dependency test for
one input bit and output bit with parameters M =1 and M =221,

For both the block cipher SAFER+256 reduced to 2 rounds and
its dual cipher, all the input-bit/output-bit combinations that resulted
in a non-ideal behavior when analyzed by the directed bit-dependency
test for one input bit and one output bit with parameters M = 1 and
M = 22! are combinations of a least significant bit of a byte in the input

with a least significant bit of a byte in the output.
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5.4 Simulation Results, Part 11

In the last section we showed the simulations results we obtained by
analyzing different block ciphers by the directed bit-dependency test
for one input bit and one output bit with parameter M = 1. What
happens when we choose the parameter M to be 2 and to be 3 is shown
in Figure 5.28 and Figure 5.29, respectively. For both tests the block
cipher IDEA reduced to 1 round did show non-ideal behaviors.

In the last section we showed both, the behavior of a block cipher and
the behavior of its dual cipher. The next derived block ciphers we can
analyze are the reduced-key-space versions of a block cipher. Figure 5.30
shows the simulation result we got by analyzing the reduced-key-space
versions of the block cipher IDEA reduced to 1 round obtained by keep-
ing one bit of the secret key fixed by the directed bit-dependency test
for one input bit and one output bit with parameter M = 1. Since the
block cipher IDEA has a key length K = 128 we can choose 128 different
key bits to be kept fix. The value we assign to this fixed key bit is either
0 or 1. Therefore there are 2 - 128 = 256 reduced-key-space versions of
the block cipher IDEA reduced to 1 round that we analyzed. For each
of these reduced-key-space versions of the block cipher we did run the
4096 random experiments of the directed bit-dependency test for one
input bit and one output bit with parameter M = 1. This gives the
total of 1048576 random experiments shown in Figure 5.30. Also for
this test the block cipher IDEA reduced to 1 round did show non-ideal
behaviors.
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Figure 5.28: The block cipher IDEA reduced to 1 round analyzed
by the directed bit-dependency test for 1 input bit and 1 outputl bit by
performing M = 22° trials and M = 2 ezecutions of the body of the
inner loop per trial.
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Figure 5.29: The block cipher IDEA reduced to 1 round analyzed
by the directed bit-dependency test for 1 input bit and 1 outputl bit by
performing M = f%2211 trials and M = 3 ezecutions of the body of the
inner loop per trial.
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Figure 5.30: The reduced-key-space wversions of the block cipher
IDEA reduced to 1 round obtained by keeping 1 bit of the secret key
fized analyzed by the directed bit-dependency test for 1 input bit and 1
output bit by performing M = 219 trials and M = 1 ezecution of the
body of the inner loop per trial.

5.5 Generalizations

The first generalization we make is instead to look at only 1 bit of the
plaintext block and only 1 bit of the ciphertext block to look at s bits of
the plaintext block and ¢ bits of the ciphertext block. Figure 5.32 shows
the simulation result obtained by looking at s = 1 bit of the plaintext
block and t = 2 bits of the ciphertext block. Figure 5.33 shows the
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simulation result obtained by looking at s = 2 bits of the plaintext
block and ¢t = 1 bit of the ciphertext block. For both cases the block
cipher IDEA reduced to 1 round did show non-ideal behaviors.

f=[f[1]]
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Figure 5.31: Feature extracting algorithm for the undirected bit-depen-
dency test of i-th input bit and k-th output bit.

The second generalization we make is instead to analyze a given
block cipher by the directed bit-dependency test to analyze the block
cipher by the undirected bit-dependency test. Figure 5.31 shows the
feature extracting algorithm for the undirected bit-dependency test for
one input bit and one output bit. The random string R takes on values
in the set R of vectors with 2N — 2 binary components according to the
uniform probability distribution Pr(r) = 2272V, The simulation result
obtained by analyzing the block cipher IDEA reduced to 1 round by the
undirected bit-dependency test for one input bit and one output bit is
shown in Figure 5.34. Also for this test the block cipher IDEA reduced
to 1 round did show non-ideal behaviors.
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Figure 5.32: The block cipher IDEA reduced to 1 round analyzed
by the directed bit-dependency test for 1 input bit and 2 output bits
by performing M = 22! trials and M = 1 ezecution of the body of the
inner loop per trial.
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Figure 5.33: The block cipher IDEA reduced to 1 round analyzed
by the directed bit-dependency test for 2 input bits and 1 output bit
by performing M = 22° trials and M = 1 ezecution of the body of the
inner loop per trial.

The third generalization we make is instead to analyze a given block
cipher by a directed bit-dependency test that analyzes single invertible
functions to analyze the block cipher by the directed bit-dependency
test that analyzes pairs of invertible functions. Figure 5.35 shows the
feature extracting algorithm for the directed bit-dependency test for one
input bit and one output bit that analyzes pairs of invertible functions.
The random string R takes on values in the set R of vectors with NV —1
binary components according to the uniform probability distribution
Pr(r) = 2'=V. The simulation result obtained for this test did not
show any new behavior of the analyzed block ciphers.
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Figure 5.34: The block cipher IDEA reduced to 1 round analyzed
by the undirected bit-dependency test for 1 input bit and 1 output bit
by performing M = 22° trials and M = 1 execution of the body of the
inner loop per trial.
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Figure 5.35: Feature extracting algorithm for the directed bit-depen-
dency test of i-th input bit and k-th output bit that analyzes pairs of
inwvertible functions.

Chapter 6

Concluding Remarks

In Chapter 2 we chose the Pearson statistic for use in the statistic former
for statistical hypothesis testing. We analyzed in detail those properties
of the Pearson statistic that are needed to interpret the results of sta-
tistical hypothesis testing properly. Of course, one could use a different
statistic in place of the Pearson statistic. If one does so, then one must
go through a similar analysis to determine how to interpret the results
of the corresponding statistical hypothesis tests properly.

The optimal statistic for use in the statistic former would be the one
that for

e a given set of probability vectors Q,

¢ a given ideal source probability vector p,

e a given observation sequence length M,

e a given probability of type I error «,

e and a given 3*
yields the largest set of probability vectors Q; that the statistical test

can detect with high probability to be different from the ideal source
probability vector, where Q; is as defined in (2.52).

89
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Most results in the literature on the optimality of various statistics
hold for an observation sequence length M going to infinity. These re-
sults do not add much to our work—we have already shown for the
Pearson statistic that, for M going to infinity, one can detect any prob-
ability vector different from the ideal source probability vector. What
would be desirable are techniques for showing the optimality of a given
statistic for the given finite M that one wishes to use, but the literature
is of no help here.

In Chapter 3 we stated the problem of finding an algorithm that
is distinguishing for a given block cipher as the first of the two basic
problems that a cryptanalyst can try to solve. Hiltgen [9] has shown
that, for N > 5, virtually all invertible functions in Fu have a gate com-
plexity larger than 2% /5. Therefore, for N > 64, virtually all invertible
functions in Fy are certainly hard to compute. Suppose now that a
cryptanalyst knows a computationally feasible probabilistic algorithm
for analyzing an invertible function that can distinguish with high prob-
ability between an invertible function that is easy to compute and an
invertible function that is hard to compute. Since all encryption func-
tions and all decryption functions of a practical block cipher must be
easy to compute, this probabilistic algorithm would be a computation-
ally feasible probabilistic algorithm for analyzing an invertible function
that is distinguishing for all practical block ciphers. This cryptanalyst
would thus have solved for all practical block ciphers the first of the two
basic problems stated in Theorem 3.10. There would be no practical
block cipher for which we could conclude that this cryptanalyst could
not break this cipher. Whether such an algorithm even exists is an
open question, but if it does, it would open up the possibility of find-
ing a probabilistic algorithm for analyzing an invertible function that
breaks all practical block ciphers.

In Chapter 4 we presented the framework for the statistical testing
of block ciphers and in Chapter 5 we described and analyzed tests that
can be performed inside this framework. Also in Chapter 5 we presented
simulation results for various block ciphers to show the usefulness of the
different tests. In developing new tests, the tests in Chapter 5 can serve
as examples of how to design such tests carefully and scientifically.

Appendix A

Proofs

A.1 Proof of Theorem 2.1

Let Uy and U, denote decision regions corresponding to the probabilities
of type I and type II error @ and 3, respectively, and let Iy and U, denote
be the “Neyman-Pearson” regions defined in (2.7) and (2.8) with type I
and type II error a and j3, respectively. With (2.5) and with (2.6) we
get

a—a= Z PU\H()(u) - Z PU\H()(u)7 (Al)

uciy uEZ/_ﬁ
B-B= Pyu(u)- Y Pym(u). (A2)
ueliy u€cly

We now define two regions

Bl = ul \Z/_[l, (A3)
Bo = Uh \ . (A4)

Since U = U \ Uy and since Uy = U \ Uy it follows that
Bl - Z/_[O \Z/[O, (A5)
Bo = Uy \ Up. (A.6)

91
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With these definitions we rewrite (A.1) and (A.2) to obtain

O[—O[—ZPU‘HO ZPU‘HO

ueBb; ueby
B-B=7 Pum) - Y Pym(u
uehB; ueby

From (2.8) and (2.7) it follows that

11661 :>HEU1 :>PU|H1(u) >TPU\H0(11)7
u€ By=uel :>PU|H1(11) STPU\H()(U)-

Applying these two inequalities to (A.8) gives

B—-3>T Z Pyig,(u) =T Z Py, (0)

ueB; ueBo
and making use of (A.7) results in
B-0>T(a—a).
For T' > 0, we obtain the two implications in Theorem 2.1

a<a=Tla-a)>0=F->0= 3> 4,
B<B=PB-B<0=>T(la—a)<0=a>a.

A.2 Proof of Theorem 2.6

We define the random vector Y to be

v - Ni —Mpy No— Mps Ny— Mpy
VMp, > /Mp, =~ /Mp,

and write (2.25) as the inner product

Su=YY".

(A7)

(A.8)

(A.9)
(A.10)

(A.11)

(A.12)

(A.15)

(A.16)

A.2. Proof of Theorem 2.6 93

Let the vectors e, es, ..., ey be an orthonormal basis for the vector
space %7, i.e.,

eie] = 0 ifi7k (A.17)
1 ifi=k,

with the vector ey having the special form
er =[/p1,/D2,. .- /D7 ] (A.18)
Let A be the invertible matrix
A=[ef,e;,... eJ] (A.19)
and let X be the random vector
X =YA. (A.20)

Using (A.20), the fact that AT = A~! (ie., that A is an orthogonal
matrix), and (A.16) gives

XX'=YA-ATY' =YY" =8y (A.21)

The last component of X = [X1, Xa,...,Xs] is

XJ_YQ,_EzNw_%? ::%%—4ﬁﬁzo (A.22)

and therefore, according to (A.21),
Suy=XI+X3+...+X35_,. (A.23)
We now show that, for M — co, the random variables Xy, Xs, ..., X; 1

are independent and identically distributed random variables having
a normal probability distribution with zero mean and unit variance
and therefore, according to (2.36), Sy has a chi-squared probability
distribution function with J—1 degrees of freedom. We show this in two
steps. In the first step, we show that the random variables X7, Xs, ...,
X ;1 have zero mean and unit variance and that they are uncorrelated.
This holds for any positive integer M. Then in the second step, we
show that, for M — oo, the random variables X7, Xo, ..., Xs_1 have
a normal probability distribution and thus are independent.
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Since q = p, the random vector N has the probability distribution
Pn(n) = m,mMi,'n],p?l py?---p7. The probability distribution of the
j-th component of the random vector N is the binomial probability

distribution with parameters M and p;, i.e.,

M . M
Py.n;)= —p.” (1 —p; ni A.24

which has mean
E[Nj] = ;ij (A25)

and variance Var [N;] = Mp;(1-p;). Using Var[N,] = E [N?] —=E[N,]®
gives

E [N] = Mp; + M(M — 1)p3. (A.26)
In the following, we assume that ¢ # k. The joint probability distribu-

tion of a pair N; and Nj of components of the random vector N is the
multinomial probability distribution

M!

. — i Tk o M—n;—ny
Pn, N, (nisng) = T Y gL p (1 = pi — pi) ’
(A.27)
which has mean
M M-—n;
NNk Z Z n; nhPN,,NL nl,nk) (A28)
n;=0 np=

Since n; = M implies that ny = 0 and hence that the product n;n; is
zero, we can take M — 1 as the upper limit of the outer sum. Inserting
(A.27) in (A.28) gives

E[N;Ny] = Z ot —p)™
n;=0
nk 1-— .
_nz_nh) ]-_pz ]-_pi
(M—ny) 124

(A.29)
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The expression over the brace in (A.29) is the formula for the mean of a
random variable having a binomial distribution with parameters M —n;
and py /(1 —p;), which is (M —n;)pr /(1 —p;) as indicated above. Thus,

M!

-1 s e,
E[N;Ny] = an ml(M —1—n )!Pi'(l—pi)M tom mpk-

(M:rl)pi
(A.30)

The expression over the brace in (A.30) is the formula for the mean of a
random variable having a binomial distribution with parameters M — 1
and p;, which is (M — 1)p;. We thus have

E[N;Ny] = M(M — 1)pipy. (A.31)
Let B be the diagonal matrix

Vi 0 0

B = 0 */p_z | (A.32)

whose inverse is the matrix

1/ypm 0 0
B~! = ? 1/\:/1)_2 (:) : (A.33)
o0 1um

Combining (A.25) with (A.18) and (A.32) gives
E[N] = Me;B, (A.34)
combining (A.26) and (A.31) with (A.18) and (A.32) gives
E[N'N] = MBB+ M(M — 1)Beje,B, (A.35)

and combining (A.15) with (A.18) and (A.33) gives

1
Y = —NB ! — VMej. A.36
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The mean of the random vector Y is

E[Y] = \/LMMeJBB—1 —vVMey =0, (A.37)

the all zero vector 0. To compute the mean of the random matrix Y'Y,
we make use of (A.36), of the fact that B~1" = B~1, of (A.35), of (A.34)
and of the fact that BT = B, to obtain

E[Y'Y]=E K%BlNT — Wef) (\/LMNB1 - mea)] ;

(A.38)
1
E[YTY]= —B 'E[NTN|B~! =B 'E[N] e
[Y'Y] VM IN"N] IN]" es (A.39)
—e) E[N|B™! + Mejey,

E[Y'Y]=I+(M-1)eje; — Meje; — Meje; + Me ey,
(A.40)

E[Y'Y]=1-ejey, (A.41)

where I denotes the identity matrix. From (A.20) and (A.37), it follows
that

E[X]=E[Y]A=0A=0 (A.42)

and hence the random variables X, X3, ..., X1 have zero mean.
From (A.20) and (A.41) and from the fact that AT = A~! it follows
that

E[X'X]=ATE[Y Y]A=1-(esA) (esA) (A.43)

or, equivalently,

o O

0
0
EX'X]=]: @ .. 1. (A.44)
00 0
00 0

O =

Since Var[X;] =E [X?] —E[X;]* =1for j = 1,2,...,J — 1 and since
Cov [X;, Xi] = E[X;Xi] — E[Xi]E[Xg] = 0 for i # k, it follows that
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the random variables X, Xo, ..., X1 have unit variances and are
uncorrelated.

The probability distribution of the random variable N; is the bino-
mial probability distribution (A.24) which has mean Mp; and variance
Mp;(1 —p;). Since 0 < p; < 1, the probability distribution function
of the random variable N; is, for large A, well approximated by a
normal probability distribution function with mean Mp; and variance

Mp;(1—pj), ie,

lim P

<rT
M—oo

l Ni = Mpi | =), (A.45)

Mp;(1 - pj)

where ®(7) is the probability distribution function (2.41) for a normal
random variable with zero mean and unit variance. Since the random
variable Y is according to (A.15) equal to (N; —Mp;)/\/Mp;, it follows
that

. Y,
— L <7 = .
1\}12100 P = = T] D7), (A.46)
i.e., for M — oo, the random variables Y7, Y5, ..., Y all have a normal

probability distribution function. In [5] it is proven, that the random
vector Y has a normal probability distribution function along the hy-
perplane Yi./p1 + Ya/p2 + ... + Y;/p; = 0. Using (A.22) and the
fact that X = YA is an orthonormal transformation, it follows that the
random vector X has a normal probability distribution function along
the hyperplane X; = 0, i.e., the random vector [X1, Xs,... , X s_1] has
a normal probability distribution function. But the random variables
Xy, Xo, ..., Xj_1 are uncorrelated and with a joint normal probability
distribution function, and hence are also independent. O

A.3 Proof of Corollary 2.10
In (2.25) Sy is defined to be

J P
= (N; — Mp;)?
=1
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From gji11 = qpy2 = ... = q; = 0 it follows that Ny 1 = Ny o =
..= N; = 0 and hence
(N; — M
Z Mp]+z pf . (A.48)
j=J'+1

The p defined in (2.44) is always positive so we can write

J' 2
Sa = M(1—p Z [(V; — ij/p)M;ij/p—ij)]_ (A 49)

=1

Expanding the squared term gives

J’! .
1< (N; — Mp,/p)°
Su=M1—p)+-> L0 4
=0 p=  Mps/p

S~ 2V, = Mpy/p) + (Mpifo = Mp)) (Mpi[p = Mp)

ij
(A.50)
With S, as defined in (2.44) we get

JI
1, 1-—
szMﬂ—m+fM+§ﬁM—Mmm—Mw7¥,Mm)
j=1
1 1
Sar = S+ M(L=p) |1+ 3T QN;/M —pi/p=p;)| - (A52)

=1

XVith Zj;l N; = M and with Zjlzl p; = p, the above equation simpli-
es to

1 1
Sar = 191, + MIZ2 (A.54)
M ’ M P . .
Equation (2.43) now follows immediately, i.e.,
1 1-—
P[Sy <7]=P [ES’ANMT” ST], (A.55)
P Sy <7]=P[Sy <7p— M(1-)p)]. (A.56)

O
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A.4 Chebychev’s Inequality

Theorem A.1 (Chebychev) Let YV be a nonnegative finite random
variable. Then for any a >0

E[Y]

P[Y >ad] <
a

(A.57)

Proof: Cf. [18]. Let ) denote the set of possible values of the ran-
dom variable Y and let Py (y) denote the probability distribution of Y.
Because y > 0 for all y € ), we have

EY]=> yPr(y) > > yPr(y) > > aPy(y) =aP[Y >a.

yey yey yey
yza y>a

(A.58)

O

A.5 Proof of Theorem 2.13

First we consider the case where 7 > E[X] and use Theorem A.1 with
a= (1 —E[X])?" and with Y = (X — E[X])?" to obtain

E[(X - EX])*]

PX ~BIX)” 2 (r~EIX)™] € = "prmme (A59)
and from this
) B B [(X - BLX)™]
PIX ~ELX]| > 7~ BIX] € <= (A.60)
The part on the left can be decomposed
PX >7]
PIX-EX] 27BN =PX B> -BI] o
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to get a lower bound on it
P[X > 7] < P[IX —E[X]| > 7 — E[X]]. (A.62)

Combining (A.60) and (A.62) gives

E[(X - E[X])*"]

P[X > 7] < R (A.63)
and with P [X > 7] < P[X > 7] we get
PIX >17]< Bl(X - BX))™] (A.64)

(r —BEX])>"
And finally changing the sign and adding one to both sides gives
E[(X - E[X])*"]

1-P[X>71]>1- B

(A.65)

which corresponds to (2.48).

Second we consider the case where 7 < E[X] and use Theorem A.1
with a = (E[X] — 7)?" and with ¥ = (X — E[X])?" to obtain

E[(X - E[X])*]

PIX —BIX)™ 2 (BIX] = 9"] € g g (A66)
and from this
E[(X -E[X])*]
PIX ~B[X]| > BIX] 7] < — oo (A.67)
The part on the left can be decomposed
>0
P[IX —E[X]| > E[X] - 7] = P[X — E[X] > B[X] - 7]
+PEX]-X >E[X]-1T] (A.68)
PX <]

to get a lower bound on it
P[X < 7] <P[X ~E[X]| > E[X] - ]. (A.69)
Combining (A.67) and (A.69) gives

E [(X - E[X])*"]
(E[X]—m)2n

PX <7< (A.70)

which is equivalent to (2.49).
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A.6 Proof of Lemma 3.7

Assume a computationally feasible probabilistic algorithm A, for ana-
lyzing an invertible function is known that solves for the block cipher
e the problem of decrypting a ciphertext block Y7 chosen uniformly at
random without asking the black box to decrypt it. The algorithm A,
outputs its analysis A = [Xl, Y1] and the probability that its plaintext
prediction is correct is substantially greater when given that the block
cipher e was chosen than when given that the complete block cipher €
was chosen, i.e.,

P& = P M)IE] > P [X) = F (1) |Ee . (A.71)

We modify the algorithm A; just before it outputs its analysis A =
[X1,Y1] to obtain a new algorithm A} by accessing the black box one
additional time to compute F(X1). The new algorithm A} outputs its
analysis A = D}, where

D! = {0 ?f F():Q) 71 (A.72)
1 ifF(X) =Y.

Since D} =1 and X; = F1(¥}) are the same events, it follows from
(A.71) that

P[D| = 1|E] > P[D} = 1|E] (A.73)

and therefore that the new probabilistic algorithm A] for analyzing an
invertible function is distinguishing for the block cipher e. To obtain the
new algorithm A], we had to access the black box only one additional
time, which costs only a small amount of time. Since the algorithm A,
is computationally feasible, it follows that the new algorithm A{ is also
computationally feasible.

Assume a computationally feasible probabilistic algorithm A, for
analyzing an invertible function is known that solves for the block cipher
e the problem of encrypting a plaintext block X5 chosen uniformly at
random without asking the black box to encrypt it. The algorithm A,
outputs its analysis A = [Xa, }72] and the probability that its ciphertext
prediction is correct is substantially greater when given that the block
cipher e was chosen than when given that the complete block cipher é
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was chosen, i.e.,
PV, = F(X:)|E:| > P [V5 = F(X0)|Ee] . (A.74)

We modify the algorithm A, just before it outputs its analysis A =
[X3,Y5] to obtain a new algorithm A, by accessing the black box one
additional time to compute F_l(ffg). The new algorithm A} outputs
its analysis A = D), where
D} = {O i (0) # X (A.75)
1 if F 1(Y2):X2.

By an argument entirely similar to the one just given, it follows that the
new algorithm A} is a computationally feasible probabilistic algorithm
for analyzing an invertible function that is distinguishing for the block
cipher e.

Assume a computationally feasible probabilistic algorithm A; for
analyzing an invertible function is known that solves for the block cipher
e the problem of finding an additional entry [Xs, Y3] in the function table
of the encryption function. The algorithm A; outputs its analysis A =
[X3, 3] and the probability that its plaintext /ciphertext pair prediction
is correct is substantially greater when given that the block cipher e was
chosen than when given that the complete block cipher € was chosen,
ie.,

P [ffg - F(X’g)lEe] > P [Y3 = F(X3)|Ee| . (A.76)

We modify the algorithm A; just before it outputs its analysis A =

[X3,Y3] to obtain a new algorithm A} by accessing the black box one

additional time to compute F(X3). The new algorithm A} outputs its
analysis A = D}, where

D = {0 i F(Xs) # Y (A.77)

1 if F(X3) = V3.

By an argument entirely similar to those just given, it follows that the
new algorithm A} is a computationally feasible probabilistic algorithm
for analyzing an invertible function that is distinguishing for the block
cipher e. |
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A.7 Proof of Lemma 3.9

Assume a computationally feasible probabilistic algorithm A for analyz-
ing an invertible function is known that solves the problem of finding
the secret key Z for the block cipher e. The algorithm A outputs its
analysis A = Z and the probability that its secret key prediction is cor-
rect is substantially greater than for a random prediction of the secret
key, i.e.,

p [Z Z} > (A.78)

where Z, is the key space of the block cipher e. Let g be an invertible
mapping from the key space Z, to the set {1,2,...,|Z.|} of positive
integers less than or equal to | Z,| that is easy to compute.

Ezample: For the key space Z. = {0,1}%, g could be the invertible
mapping that, for a secret key z, interprets it as the binary representa-
tion of an integer, increments this integer by one, and takes this new
integer as the mapped value of the secret key z. Then the all-zero se-
cret key [0,0,...,0] would be mapped to 1 and the all-one secret key
[1,1,...,1] would be mapped to 2.

Let {Z.,2.2,...,2.2.} be the decomposition of the key space
Z. where Z,1 = {9_1(1)}7 Ze2 = {9_1(2)}7 oy Belzel = {g_l(|Ze|)}'
We now modify the algorithm A to obtain a new algorithm A’ that,
instead of outputting the analysis A = Z, computes W = g(Z) and
outputs the analysis A = W. For this new algorithm A’ we can compute
the probability that the secret key lies in the predicted subset of the

decomposition as

P[ZeZw|=P[Ze{g (W)}
PlZ€Zw]=P[Z=g""(W)] (A.79)
P[Z € Zw]=P Z:Z].
Combining (A.78) and (A.79) gives
P[Z€ Zw]> (A.80)

|Zel
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But since every subset of the decomposition contains exactly one secret
key in the given decomposition of the key space, we have

|Z.| |Zel| 1
max = A8l
=1 |Z,] | Ze] ( )
and therefore
2| |2,
PIZ € 2] > tix Zal, (A.82)
=1 |Z]|

This makes the new algorithm A’ a probabilistic algorithm for analyzing
an invertible function that is key-subset distinguishing for the block
cipher e and for the decomposition {Z.1, Z.,...,Z,z,} of the key
space Z.. Since the algorithm A is computationally feasible and since
the invertible mapping ¢ is easy to compute, it follows that the new
algorithm A’ is also computationally feasible. O
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